Différents Formulaires

Pour simplifier les calculs

Cours de Mathématiques D. Zarouf C.P.G.E Brizeux PSI Table des matières

1 Alphabet Grec dans l'écriture scientifique

Lettre grecque minuscule	Lettre grecque majuscule	Prononciation	Lettre latine équivalente
α	A	alpha	a
β	В	beta	b
γ	Γ	gamma	g
δ	Δ	delta	d
ε	E	epsilon	е
ζ	Z	zêta	Z
η	Н	êta	h
θ	Θ	théta	q
L	Ι	iota	i
κ	K	kappa	k
λ	Λ	lambda	1
μ	M	mu	m
ν	N	nu	n
ξ	Ξ	xi ou ksi	С
0	О	omicron	0
π	П	pi	p
ρ	P	rho	r
σ	Σ	sigma	S
au	Т	tau	t
v	Υ	upsilon	u
ϕ	Phi	phi	f
χ	X	chi ou khi	X
$ \psi $	Ψ	psi	у
ω	Ω	omega	W

2 Formulaire Trigonométrique

Formule de Moivre : $\forall n \in IN, \forall \theta \in R$,

$$\cos(n\theta) + i\sin(n\theta) = (\cos(\theta) + i\sin(\theta))^n$$

Formules d'Euler : $\forall \theta \in \mathbb{R}$,

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Relations trigonométriques diverses :

$$\forall x \in \mathbb{R}, \cos^2 x + \sin^2 x = 1$$

$$\forall x \neq (\frac{\pi}{2} + \pi \mathbb{Z}), \tan x = \frac{\sin x}{\cos x}$$

Formules d'addition : $\forall (a, b) \in \mathbb{R}^2$,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b).$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b).$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b).$$

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}.$$

De ces formules, on en déduit des formules de linéarisation, de transformation de sommes en produits :

$$\begin{array}{rcl} \cos(p) + \cos(q) & = & 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2}) \\ \cos(p) - \cos(q) & = & -2\sin(\frac{p+q}{2})\sin(\frac{p-q}{2}) \\ \sin(p) + \sin(q) & = & 2\sin(\frac{p+q}{2})\cos(\frac{p-q}{2}) \\ \sin(p) - \sin(q) & = & 2\cos(\frac{p+q}{2})\sin(\frac{p-q}{2}) \end{array}$$

qu'il n'est pas utile de connaitre par coeur mais plutôt savoir les retrouver à partir des formules d'addition.

On a aussi;

$$\sin(2a) = 2\sin(a)\cos(a).$$

$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a.$$

A partir desquelles on obtient, en particulier (utile pour intégrer) :

$$\cos^2(a) = \frac{1 + \cos(2a)}{2}.$$

$$\sin^2(a) = \frac{1 - \cos(2a)}{2}.$$

.

3 Formulaire de trigonométrie hyperbolique

Définition : On appelle : sinus hyperbolique l'application

sh:
$$R \rightarrow R$$

 $x \longmapsto \operatorname{sh} x = \frac{e^x - e^{-x}}{2}$

cosinus hyperbolique l'application

ch:
$$\mathbf{R} \to \mathbf{R}$$

 $x \longmapsto \operatorname{ch} x = \frac{e^x + e^{-x}}{2}$

tangente hyperbolique l'application

th:
$$R \rightarrow R$$

 $x \longmapsto \text{th } x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}$

En utilisant les définitions de ch, sh, th, on obtient aisément les formules suivantes, pour tous x, a, b de \mathbb{R} :

 $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$ A connaître absolument.

$$ch(a+b) = ch a ch b + sh a sh b.$$

$$ch(a - b) = ch a ch b - sh a sh b.$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{ch} a \operatorname{sh} b.$$

$$\operatorname{sh}(a-b) = \operatorname{sh} a \operatorname{ch} b - \operatorname{ch} a \operatorname{sh} b.$$

$$th(a+b) = \frac{th a + th b}{1 + th a th b}.$$

$$th(a-b) = \frac{th a - th b}{1 - th a th b}.$$

$$ch(2a) = ch^{2} a + sh^{2} a = 2ch^{2} a - 1 = 1 + 2sh^{2} a.$$

$$\operatorname{sh}(2a) = 2\operatorname{ch} a\operatorname{sh} a.$$

$$th(2a) = \frac{2 th a}{1 + th^2 a}.$$

$$\mathrm{ch}^2 a = \frac{\mathrm{ch}(2a) + 1}{2}.$$

$$\mathrm{sh}^2 a = \frac{\mathrm{ch}(2a) - 1}{2}.$$

4 Dérivées des fonctions usuelles

f	Domaine de Définition	f'	Domaine de Dérivabilité
$x \longmapsto k \in \mathbb{R}$	R	0	R
$x^n, n \in \mathbb{Z}^*$	$R \text{ si } n \in IN^*, R^* \text{ sinon}$	nx^{n-1}	$R \text{ si } n \in IN^*, R^* \text{ sinon}$
\sqrt{x}	R^+	$\frac{1}{2\sqrt{x}}$	R_+^*
$\ln(x)$	R_+^*	$\frac{1}{x}$	R_+^*
e^x	R	e^x	R
$\cos(x)$	R	$-\sin(x)$	$oxed{R}$
$\sin(x)$	R	$\cos(x)$	R
$\tan(x)$	$\left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}] \right]$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}] \right]$
Arccos(x)	[-1, 1]	$-\frac{1}{\sqrt{1-x^2}}$] - 1, 1[
Arcsin(x)	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$] - 1, 1[
Arctan(x)	R	$\frac{1}{1+x^2}$	R

c

f	Domaine de Définition	f'	Domaine de Dérivabilité
ch(x)	R	sh(x)	R
sh(x)	R	$\operatorname{ch}(x)$	R
th(x)	R	$1 - \operatorname{th}^{2}(x) = \frac{1}{\operatorname{ch}^{2}(x)}$	R
$x^{\alpha}, \alpha \in I\!\!R$	R_*^+	$\alpha x^{\alpha-1}$	R_*^+

_

5 Autour des Primitives

5.1 Tableau des primitives usuelles

Dans la première colonne figure la fonction f dont on veut donner les primitives. Dans la deuxième colonne, se trouve **une** primitive de f.

Dans la troisième colonne, se trouve le domaine de définition des primitives. En particulier, on ne peut intégrer f que sur un intervalle inclus dans ce domaine.

Fonction $f, f(x)$	Primitive $F, F(x)$	Domaine de définition de F
$e^{\alpha x}, \alpha \in \mathbb{R}^*$ fixé	$\frac{1}{\alpha}e^{\alpha x}$	R
$\operatorname{ch} \omega x \ (\omega \in \mathbb{R}^*)$	$\frac{1}{\omega} \operatorname{sh} \omega x$	R
	$\frac{1}{\omega} \operatorname{ch} \omega x$	R
$\cos \omega x (\omega \in \mathbb{R}^*)$	$\frac{1}{\omega}\sin\omegax$	R
$\sin \omega x (\omega \in \mathbb{R}^*)$	$-\frac{1}{\omega}\cos\omegax$	R
$\tan x$ $th x$	$-\ln \cos x $ $\ln \cosh x$	
$\frac{1}{\operatorname{ch}^2 x} = 1 - \operatorname{th}^2 x$	$\operatorname{th} x$	R
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\tan x$	$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[(\pi)$
$x^{\alpha}, \alpha \in \mathbf{R} - \mathbf{Z}$	$\frac{x^{\alpha+1}}{\alpha+1}$	R_+^*
$x^n, n \in \mathbb{Z} \{0, -1\}$	$\frac{x^{n+1}}{n+1}$	$]-\infty,0[\text{ ou }]0,+\infty[$
$x^n, n \in IN$	$\frac{x^{n+1}}{n+1}$	$oxed{R}$
$\frac{1}{x}$	ln x	$]-\infty,0[\text{ ou }]0,+\infty[$
$\frac{1}{ax+b},(a,b)\in \mathbf{R}^*\times\mathbf{R}$	$\frac{1}{a} \ln ax + b $	$]-\infty, -\frac{b}{a}[\text{ ou }]\frac{b}{a}, +\infty[$
$\frac{1}{a^2 + x^2} \ (a \neq 0)$	$\frac{1}{a}\operatorname{Arctan}\frac{x}{a}$	R
$\frac{1}{\sqrt{a^2 - x^2}} \left(a > 0 \right)$	$\arcsin \frac{x}{a} \text{ ou } -\arccos \frac{x}{a}$]-a,a[

^

5.2 Opérations usuelles

Fonction $f, f(x)$	Primitive $F, F(x)$	Commentaires
a f', a réel	af	
f'+g'	f+g	
$f' f^n, n \in \mathbb{Z}, n \neq -1$	$\frac{1}{n+1} f^{n+1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{f'}{f}$	$\ln \mid f \mid$	
$f'\times (g\circ f)$	$g \circ f$	

1,

6 Autour des développements limités

6.1 Règles de calculs sur les développements limités

Les propriétés sont énoncées pour des développements limités au voisinage de zéro.

On considère deux fonctions f et g définies au voisinage de zéro admettant chacune un développement limité d'ordre n

$$f(x) = P(x) + o(x^n)$$

$$g(x) = Q(x) + o(x^n)$$

où P et Q sont des polynômes de degré inférieur à n, qu'on appelle parties régulières respectivement de f et g.

Rappelons les méthodes pour obtenir les développements limités d'une somme, produit, composée et quotient :

Linéarité:

Pour tout $\lambda \in \mathbb{R}$, $\lambda f + g$ admet un développement limité en 0 à l'ordre n et

$$\lambda f(x) + g(x) = \lambda P(x) + Q(x) + o(x^n)$$

Produit:

fg admet un développement limité d'ordre n et sa partie régulière s'obtient en formant le produit PQ et en ne retenant que les termes de degré inférieur ou égal à n.

Composée:

On suppose que f(0) = 0.

 $g \circ f$ admet un développement limité d'ordre n et sa partie régulière s'obtient en ne retenant du polunôme $Q \circ P$ que les termes de degré inférieur ou égal à n.

Quotient:

On suppose que $f(0) \neq 0$.

Alors $\frac{1}{f}$ admet un développement limité d'ordre n et pour l'obtenir, on écrit :

$$\frac{1}{f} = \frac{1}{a(1 - u(x))}$$

et on effectue le $DL_n(0)$ de la composée des fonctions u(x) et $\frac{1}{a} \frac{1}{1-x}$.

Des exemples :

1) $DL_7(0)$ de $\ln(\cos(x))$:

On écrit le DL de cos :

$$\ln(\cos(x)) = \ln(1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^7))$$

On utilise le développement limité de $\ln(1-z) = -z - \frac{z^2}{2} - \frac{z^3}{3} + o(z^3)$: L'ordre 3 suffit car on l'utilise pour $z = \frac{x^2}{2} - \frac{x^4}{4!} + \frac{x^6}{6!} + o(x^7)$ et on cherche un $DL_7(0)$ par rapport à x.

Alors, finalement

$$\ln(\cos(x)) = -\left(\frac{x^2}{2} - \frac{x^4}{4!} + \frac{x^6}{6!}\right)$$
$$-\frac{1}{2}\left(\frac{x^2}{2} - \frac{x^4}{4!} + \frac{x^6}{6!}\right)^2$$
$$-\frac{1}{3}\left(\frac{x^2}{2} - \frac{x^4}{4!} + \frac{x^6}{6!}\right)^3$$
$$+o(x^7)$$

On ne retient que les monômes de degrés inférieurs ou égaux à 7. Il s'ensuit que :

$$\ln(\cos(x)) = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + o(x^7)$$

2) $DL_5(0)$ de tan(x):

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
$$= \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^5)}$$

On utilise maintenant le développement limité de $\frac{1}{1-z} = 1 + z + z^2 + o(z^2)$: L'ordre 2 suffit car on l'utilise pour $z = \frac{x^2}{2} - \frac{x^4}{4!} + o(x^5)$ et on cherche un $DL_5(0)$ par rapport à x. Alors, finalement

$$\tan(x) = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^5)}$$
$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)\right) \left(1 + \frac{x^2}{2} - \frac{x^4}{4!} + \left(\frac{x^2}{2} - \frac{x^4}{4!}\right)^2 + o(x^5)\right)$$

On ne retient que les monômes de degrés inférieurs ou égaux à 5. Il s'ensuit que :

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$$

6.2 Tableau des développements limités usuels

Tous les développements limités cités ci-dessous sont au voisinage de 0.

I. Développements limités obtenus par le théorème de Taylor-Young

Ordre	$\mathrm{DL}(0)$
n	$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$
2n+1	$\operatorname{ch}(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$
2n+2	$\operatorname{sh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$
2n+1	$\cos(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$
2n+2	$\sin(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$
n	$\forall \alpha \in \mathbf{R}, \ (1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n)$
n	$\frac{1}{1-x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n + o(x^n)$
n	$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$

6.3 Développements limités obtenus par intégration

Ordre	$\mathrm{DL}(0)$
n	$\ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$
n	$\ln(1-x) = -\sum_{k=1}^{n} \frac{x^k}{k} + o(x^n) = -x - \frac{x^2}{2} - \dots - \frac{x^n}{n} + o(x^n)$
2n+2	Arctan $x = \sum_{k=1}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$
2n+2	Arcsin $x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots + \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$
2n+2	Arccos $x = \frac{\pi}{2} - x - \frac{1}{2} \frac{x^3}{3} - \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} - \dots - \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$

- 7 Les développements en séries entières usuels à connaître ou à savoir retrouver
- 7.1 Variable complexe

$$\forall z \in \mathcal{C}, |z| < 1, \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$

$$\forall z \in \mathcal{C}, e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

- 7.2 Variable réelle
- 7.2.1 Obtenu par la série exponentielle

$$\forall x \in R, \cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\forall x \in R, \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\forall x \in R, \operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

$$\forall x \in R, \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

7.2.2 Obtenu par la méthode de l'équation différentielle

$$\forall x \in]-1,1[, \ \forall \alpha \in \mathbb{R}, \ (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n$$

7.2.3 Obtenu par intégration du développement précédent pour α particulier

$$\forall x \in]-1,1[, \ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$$

$$\forall x \in]-1,1[, \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

$$\forall x \in]-1,1[, \arctan x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$\forall x \in]-1,1[, \arcsin x = x + \sum_{n=1}^{+\infty} \frac{1.3...(2n-1)}{2.4...(2n)} \frac{x^{2n+1}}{2n+1}$$

$$\forall x \in]-1,1[, \arccos x = \frac{\pi}{2} - \sum_{n=0}^{+\infty} \frac{1.3...(2n-1)}{2.4...(2n)} \frac{x^{2n+1}}{2n+1}$$

1 -