Préparation à l'oral n°1 Probabilités

Niveau Mines/ Centrale 1

Exercice 1. (Mines-Pont PSI 2015)

1. Diagonaliser
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- 2. Soit ABCD un carré sur lequel on se déplace comme suit :
 - Si on se trouve sur A à l'étape n, on va en B avec la proba $\frac{1}{2}$, en D avec la proba $\frac{1}{3}$ et on reste en A avec la proba $\frac{1}{6}$.
 - Si on se trouve sur B à l'étape n, on va en C avec la proba ¹/₂, en A avec la proba ¹/₃ et on reste en B avec la proba ¹/₆.
 Si on se trouve sur C à l'étape n, on va en D avec la proba ¹/₂, en B avec la proba ¹/₃ et on reste en C avec la proba ¹/₆.

 - Si on se trouve sur D à l'étape n, on va en A avec la proba $\frac{1}{2}$, en C avec la proba $\frac{1}{3}$ et on reste en D avec la proba $\frac{1}{6}$. On note a_n la probabilité d'être en A à l'étape n.

Calculer la limite de la suite $(a_n)_n$.

Exercice 2. (Mines Ponts 2016)

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes, suivant la loi de Bernoulli de paramètre $p\in]0,1[$. Pour tout $n \in \mathbb{N}^*$, on pose $Y_n = X_n X_{n+1}$ et $S_n = \sum_{i=1}^n Y_i$.

- 1. Déterminer la loi de Y_n , son espérance et sa variance. Calculer l'espérance de S_n .
- 2. Calculer $\forall (i, j), i \neq j, cov(Y_i, Y_j)$.
- 3. En déduire la variance de S_n

Exercice 3. (Centrale PSI 2018)

Soit a et b deux entiers strictement positifs. On place b boules blanches et b boules noires dans une urne. On effectue une succession de tirages avec remise et chaque fois que l'on tire une boule blanche, on rajoute a boules blanches supplémentaires dans l'urne. Soit $n \in \mathbb{N}$. On note A_n l'événement « on n'a tiré que des boules blanches au cours des n premiers tirages » et on pose $p_n = P(A_n)$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $p_{n+1} = \frac{b+an}{2b+an}p_n$.
- 2. Déterminer la limite de la suite $(p_n)_n$.

Exercice 4. (Centrale PSI 2018)

Soit (X_1, \dots, X_n) une famille de vad indépendantes toutes de même loi de Bernoulli de paramètre $\frac{1}{2}$. On pose $S_n = \sum X_i$.

Soient λ et t deux réels strictement positifs.

- 1. Donner la loi de S_n et préciser son espérance et variance.
- 2. Calculer l'espérance de $\exp(\lambda(X_1 \frac{1}{2}))$.
- 3. Déterminer l'espérance de la variable $\exp(\lambda(S_n E(S_n)))$.
- 4. Trouver une fonction f_t telle que $P(S_n E(S_n) > nt) \leq e^{nf_t(\lambda)}$.
- 5. Déterminer le maximum de $f_t(\lambda)$ pour $|t| \leq \frac{1}{2}$.

Exercice 5. (Mines-Ponts PSI 2021)

Soit (X_1, \dots, X_n) une famille de vad indépendantes toutes de même loi de Bernoulli de paramètre p. On considère la matrice aléatoire $M = (X_i X_j)_{1 \le i, j \le n}$.

- 1. Donner la loi du rang et de la trace de M.
- 2. Quelle est la probabilité que M représente un projecteur?

Exercice 6. (Mines-Télécom PSI 2019 / Centrale 2017)

Soit $p \in]0,1[$. On se donne une pièce qui tombe sur pile avec la proba p. On la lance jusqu'à obtenir 2 fois pile et on note X le nombres de faces obtenus.

- 1. IMT Donner la loi du temps d'attente du n^{ime} succès dans une succession d'épreuves de Bernoulli indépendantes
- 2. IMT En déduire Donner la loi de X.
- 3. Montrer l'existence et donner la valeur de l'espérance de X.
- 4. Uniquement à Centrale : Si X = n, on place n + 1 boules numérotées de 0à n dans une urne. On pioche une boule au hasard et Y désigne le numéro de la boule piochée. Donner la loi de Y et son espérance.

2 Niveau IMT/CCINP

Exercice 7. (Mines-Télécom PSI 2019)

Soient X et Y deux variables aléatoires indépendantes sur (Ω, \mathcal{A}, P) qui suivent une loi géométrique de paramètre p. Trouver la probabilité pour que les matrices $\begin{pmatrix} X & X \\ 0 & Y \end{pmatrix}$ et $\begin{pmatrix} 1 & X \\ 0 & 2 \end{pmatrix}$ soient semblables.

Exercice 8. (Mines-Télécom PSI 2021)

Soit $f: t \mapsto \frac{t}{2-t^2}$.

- 1. Développer f en série entière, préciser le rayon de convergence.
- 2. Donner la loi d'une variable aléatoire X dont la fonction génératrice est f .
- 3. Calculer l'espérance de X .
- 4. Déterminer la loi de la variable aléatoire $Y = \frac{X}{2}$.

Exercice 9. (CCINP PSI 2021)

Une urne contient a boules blanches et b boules noires. On réalise n tirages avec remise.

- 1. Soit B_i l'événement « on tire i boules blanches ». Calculer $P(B_i)$
- 2. Montrer $\forall x \in \mathbb{R}, \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2i} x^{2i} = \frac{1}{2} ((1+x)^n + (1-x)^n)$
- 3. Calculer la probabilité de tirer un nombre pair de boules blanches.

Exercice 10. (CCINP PSI 2021)

Dans une succession de n lancers « pile / face » indépendants, on note p_n la probabilité qu'on n'obtienne pas deux piles consécutifs.

- 1. Calculer p_1, p_2 et p_3 .
- 2. On considère les événements $F_i = \emptyset$ on obtient face au $i^{\mbox{\scriptsize ième}}$ lancer »avec $i \in \{1,2\}$. Montrer que $(F_1 \cap F_2, \overline{F_1} \cap F_2, F_1 \cap \overline{F_2}, \overline{F_1} \cap \overline{F_2})$ est un système complet d'événements de Ω .
- 3. En utilisant un système complet d'événements un peu mieux choisi, établir la relation : $p_{n+2}=\frac{1}{4}p_n+\frac{1}{2}p_{n+1}$
- 4. Montrer que la suite $(p_n)_n$ converge vers 0.

Exercice 11. (CCINP PSI 2019)

On considère une urne contenant des boules numérotées de 1 à n. On dispose d'un jeton mobile sur un axe gradué de 0 à n. La position initiale du jeton est 0. On effectue des tirages avec remise dans l'urne et à chaque tirage , si le numéro de la boule est inférieur ou égal à la position du jeton, on déplace le jeton d'une graduation vers la gauche , sinon on déplace le jeton d'une graduation vers la droite.

- 1. Donner les positions possibles du jeton après p tirages pour $p \in \{0, 1, 2, 3\}$ puis pour tout p.
- 2. On note X_p la position de jeton après p tirages. Exprimer $P(X_{p+1} = 0)$ en fonction de $P(X_p = 1)$ et Exprimer $P(X_{p+1} = n)$ en fonction de $P(X_p = n 1)$.
- 3. Pour $1 \leq k \leq n-1$, exprimer $P(X_{p+1}=k)$ en fonction de $P(X_p=k-1)$ et $P(X_p=k+1)$.
- 4. Rappeler pourquoi la fonction génératrice d'une va à valeurs dans \mathbb{N} existe au moins sur l'intervalle [-1,1]. On note G_p la fonction génératrice de X_p . Pourquoi G_p est-elle polynomiale?
- 5. On admet que $G_{p+1}(t) = tG_p(t) + \frac{1-t^2}{n}G_p'(t)$. Montrer que $E(X_{p+1}) = 1 + (1-\frac{2}{n})E(X_p)$.
- 6. Déterminer $E(X_p)$.

Exercice 12. (CCINP PSI 2018)

Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2, \ P((X,Y) = (j,k)) = \frac{1}{e^{2j+1} k!}$$

- 1. Déterminer les lois de X et de Y.
 - Les variables X et Y sont-elles indépendantes?
- 2. Prouver que 1+X suit une loi géométrique. En déduire espérance, variance de X ainsi que celles de Y.
- 3. Calculer P(X = Y).