PSI MATHEMATIQUES Juin 2023

Préparation à l'oral n°8 Équations différentielles

1 Niveau Mines/ Centrale

Exercice 1. (Mines-Ponts) Soit $n \in \mathbb{N}$. Résoudre sur \mathbb{R} , l'équation différentielle xy' - ny = 0.

Exercice 2. (Mines-Ponts PSI 2021)

Soit (E): ty'' + 2y' - ty = 0

- 1. Trouver les solutions de (E) développables en série entière.
- 2. Résoudre (E) sur \mathbb{R}_*^+ , sur \mathbb{R}_*^- puis sur \mathbb{R} .

Exercice 3. (Centrale 2021)

Soit $n \in \mathbb{Z}$ et $(E_n) : t^2 u'' + t u' - n^2 u = 0$.

- 1. Déterminer $\alpha \in \mathbb{R}$ tels que $u_{\alpha}: t \mapsto t^{\alpha}$ soit solution sur (E_n) sur \mathbb{R}_+^+ . Résoudre (E_n) sur \mathbb{R}_+^+ .
- 2. Soit f et g deux fonctions de classe C^2 de \mathbb{R}^2 dans \mathbb{R} vérifiant $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$ et $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$. On pose et $\hat{f}: (r,\theta) \mapsto f(r\cos(\theta),r\sin(\theta))$ et $\hat{g}: (r,\theta) \mapsto g(r\cos(\theta),r\sin(\theta))$. Relier $\frac{\partial \hat{f}}{\partial r}$ à $\frac{\partial \hat{g}}{\partial \theta}$ et $\frac{\partial \hat{f}}{\partial \theta}$ à $\frac{\partial \hat{g}}{\partial r}$
- 3. Montrer que $k_n: r \mapsto \int_{-\pi}^{\pi} \hat{f}(r,\theta) e^{in\theta} d\theta$ vérifie (E_n) et en déduire qu'il existe $a_n \in \mathbb{C}$ tel que pour tout r > 0, $k(r) = a_n r^{|n|}$.

2 Niveau IMT/CCINP

Exercice 4. (CCINP) Soit le système différentiel Y'(t) = A(t)Y(t) avec $A(t) = \begin{pmatrix} 1 - 3t & -2t \\ 4t & 1 + 3t \end{pmatrix}$

- 1. Donner les éléments propres de A(t).
- 2. En déduire qu'il existe P indépendant de t telle que $P^{-1}A(t)P$ soit diagonale.
- 3. Résoudre le système différentiel.

Exercice 5. (CCINP) On considère l'équation différentielle (E): $(x^2 - 1)y'' + 2xy' - 2y = 0$.

- 1. Déterminer les solutions polynomiales de (E).
- 2. Trouver une équation différentielle (E') vérifiée par $x \mapsto z(x) = \frac{1}{x}y(x)$.
- 3. Résoudre (E'). En déduire toutes les solutions de (E).

Exercice 6. (IMT)Résoudre le problème de Cauchy suivant :

$$\begin{cases} y'' + xy' + 3y = 0\\ y(0) = 1, y'(0) = 0 \end{cases}$$

Exercice 7. (IMT) Soit (E): (2x+1)y'' + (4x-2)y' - 8y = 0.

- 1. Chercher les solutions polynomiales et les solutions du type $x \mapsto e^{ax}$ avec $a \in \mathbb{R}$.
- 2. En déduire les solutions de (E) sur $]-\frac{1}{2},+\infty[$ puis sur \mathbb{R}

Exercice 8. (IMT) Soit le système (S): $\begin{cases} x' = y - z \\ y' = z - x \\ z' = x - y \end{cases}$ avec les conditions initiales x(0 = 1, y(0) = z(0) = 0.

- 1. Justifier l'existence et l'unicité des solutions de (S).
- 2. Montrer que si (x, y, z) est une solution alors x + y + z et $x^2 + y^2 + z^2$ sont des fonctions constantes. Que peut-on en déduire pour la trajectoire?
- 3. Résoudre (S).