PSI MATHEMATIQUES Juin 2023

Préparation à l'oral n°9 Intégrales à paramètre

Exercice 1. (Centrale) Soit
$$J(a,b)=\int_0^1 \frac{t^{a-1}}{1+t^b}\,\mathrm{d}t$$
 où $(a,b)\in(\mathbb{R}^+_*)^2.$

- 1. Étudier la convergence de J(a,b).
- 2. Calculer $J(\frac{1}{2}, \frac{1}{2})$.
- 3. Mettre J(n,1) sous forme de somme finie où $n \in \mathbb{N}^*$.
- 4. Mettre J(a, b) sous forme de somme d'une série numérique.
- 5. Étudier $\lim_{a\to 0^+} J(a,b), \lim_{a\to +\infty} J(a,b)$, $\lim_{b\to 0^+} J(a,b), \lim_{b\to +\infty} J(a,b)$

Exercice 2. (Mines-Ponts) Soit
$$f: x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$$
 et $g: x \mapsto \cos x \int_x^{+\infty} \frac{\sin t}{t} dt - \sin x \int_x^{+\infty} \frac{\cos t}{t} dt$.

- 1. Montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt$ et $\int_1^{+\infty} \frac{\cos t}{t} dt$ convergent.
- 2. Montrer que f et g sont solutions de $y'' + y = \frac{1}{x} \operatorname{sur}]0, +\infty[.$
- 3. En déduire que f = g et la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 3. (CCINP/ Mines-Ponts) On pose $F(x) = \int_0^{+\infty} e^{-xt} \frac{\sinh(t)}{t} dt$.

- 1. Donner l'ensemble de définition de F.
- 2. Etudier la dérivabilité de F et calculer F'. (Mines : Absent)
- 3. Calculer la limite de F en $+\infty$. (Mines : Donner un équivalent)
- 4. Donner une expression de F

Exercice 4. (CCINP PSI 2021)

On définit
$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- 1. Donner l'ensemble de définition de Γ .
- 2. Trouver une relation entre $\Gamma(x+1)$ et $\Gamma(x)$ en déduire $\Gamma(n)$.
- 3. Calculer $\Gamma(\frac{1}{2})$.
- 4. Montrer que Γ est C^2 sur son domaine de définition. Donner $\Gamma''(x)$.
- 5. Montrer que Γ' s'annule en un seul point $x_0 \in]1, 2[$.
- 6. Donner les limites de Γ aux bornes de son domaine de définition.

Exercice 5. (IMT) Pour tout x réel, on pose : $S(x) = \int_0^{+\infty} \sin(xt)e^{-t^2} dt$ et $C(x) = \int_0^{+\infty} t \cos(xt)e^{-t^2} dt$

- 1. Montrer que S et C sont bien définies sur \mathbb{R} . Sont-elles continues?
- 2. Montrer que S est dérivable. Exprimer S' au moyen de C .
- 3. Montrer que : $C(x) = \frac{1}{2} \frac{x}{2}S(x)$.
- 4. En déduire S et C , exprimées au moyen d'une intégrale.