Outils mathématiques Analyse vectorielle

Compétences

Ш	Relier le gradient à la différentielle d'un champ scalaire à t fixé.
	Exprimer les composantes du gradient en coordonnées cartésiennes.
	Utiliser le fait que le gradient d'une fonction f est perpendiculaire aux surfaces iso- f et orienté
	dans le sens des valeurs de f croissantes.
	Citer et utiliser le théorème d'Ostrogradski.
	Exprimer la divergence en coordonnées cartésiennes.
	Citer et utiliser le théorème de Stokes.
	Exprimer le rotationnel en coordonnées cartésiennes.
	Définir le laplacien à l'aide de la divergence et du gradient.
	Exprimer le laplacien en coordonnées cartésiennes.
	Exprimer le laplacien d'un champ de vecteurs en coordonnées cartésiennes.
	Utiliser la formule d'analyse vectorielle : \overrightarrow{rot} $(\overrightarrow{rot} \overrightarrow{A}) = \overrightarrow{grad}$ $(\text{div } A) - \Delta \overrightarrow{A}$.

Résumé du cours

1. Gradient

1.1. Définition

Les opérateurs vectoriels ont une expression simple en fonction de $\vec{\nabla}$.

Notation nabla $\vec{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$

Le gradient est un opérateur s'applicant aux champs scalaires et renvoyant un vecteur.

Gradient

Hypothèses:

- f est une fonction de \mathbb{R}^3 dérivable.
- les variables de f sont les coordonnées cartésiennes.

$$\overrightarrow{grad} \ f = \overrightarrow{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

APPLICATION

Ø.

Exprimer le gradient du champ $\frac{1}{\sqrt{x^2+y^2+z^2}}$.

En coordonnées cylindriques ou sphériques, la première coordonnée (i.e. selon \vec{e}_r) de \overrightarrow{grad} f est la dérivée par rapport à r.

APPLICATION

 \mathbb{Z}^2

Exprimer le gradient du champ $\frac{1}{r}$ en coordonnées sphériques. Est-ce cohérent avec l'application précédente? On pourra utiliser l'expression de \overrightarrow{OM} dans les bases cartésiennes et sphérique pour comparer les deux expressions.

2. Divergence

2.1. Définition

La divergence est un opérateur s'applicant aux champs vectoriels et renvoyant un scalaire.

Divergence

Hypothèses:

- \vec{A} est une fonction de \mathbb{R}^3 dérivable.
- les variables de \vec{A} sont les coordonnées cartésiennes.

$$\bullet \quad \vec{A} = A_x \vec{e}_x + A_y \vec{e}_y + A_z \vec{e}_z$$

$$\operatorname{div} \vec{A} = \vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

APPLICATION

 $\mathbb{Z}_{\mathbb{D}}^{3}$

Exprimer la divergence du champ $x\vec{e}_x + \frac{1}{x}\vec{e}_y + \frac{1}{z}\vec{e}_z$.

2.2. Théorème d'Ostrogradski

Le théorème d'Ostrogradski est parfois appelé théorème de Green-Ostrogradski ou théorème de la divergence.

Théorème d'Ostrogradski

Hypothèses:

- \vec{A} est une fonction de \mathbb{R}^3 dérivable.
- V est le volume délimité par la surface fermée, orientée vers l'extérieur, S.

$$\iiint_V \operatorname{div} \, \vec{A} \, \mathrm{d}V = \oiint_S \vec{A} \cdot \vec{\mathrm{d}S}$$

APPLICATION

Parmi les surfaces suivantes, lesquelles sont fermées :

une sphère un disque un cube une pyramide

un trapèze

une demi-sphère

3. Rotationnel

3.1. Définition

Le rotationnel est un opérateur s'applicant aux champs vectoriels et renvoyant un vecteur.

Rotationnel

Hypothèses:

- \vec{A} est une fonction de \mathbb{R}^3 dérivable.
- les variables de \vec{A} sont les coordonnées cartésiennes.

$$\overrightarrow{rot} \ \overrightarrow{A} = \overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{pmatrix} \qquad \overset{\text{Avec}}{\bullet} \overrightarrow{A} = A_x \overrightarrow{e}_x + A_y \overrightarrow{e}_y + A_z \overrightarrow{e}_z$$

$$\bullet \ \ \vec{A} = A_x \vec{e}_x + A_y \vec{e}_y + A_z \vec{e}_z$$

3.2. Théorème de Stockes

Théorème de Stockes

Hypothèses:

- \vec{A} est une fonction de \mathbb{R}^3 dérivable.
- S est une surface s'appuyant sur la courbe fermée \mathcal{C} , orientée dans le sens positif par rapport à \mathcal{C} .

$$\iint_{S} \overrightarrow{rot} \ \vec{A} \cdot \vec{dS} = \oint_{C} \vec{A} \cdot \vec{dl}$$

SCHÉMA: Orientation relative entre une surface et sa frontière

3.3. Champ irrotationnel

Un champ dont le rotationnel est nul est dit irrotationnel. Un champ irrotationnel peut s'écrire comme un gradient.

Champ irrotationnel

) B

Hypothèse : \vec{A} est une fonction de \mathbb{R}^3 dérivable.

$$\overrightarrow{rot} \ \overrightarrow{A} = \overrightarrow{0} \Leftrightarrow \exists f \mid \overrightarrow{A} = \overrightarrow{grad} \ f$$

APPLICATION

 $a_{\rm D}6$

Démontrer le sens $\exists f \mid \vec{A} = \overrightarrow{grad}(f) \Rightarrow \text{div } \vec{A} = 0$

APPLICATION

Øn.

 $\vec{E}=-\overrightarrow{grad}~V$ est-il compatible avec les équations de Maxwell en régime stationnaire ? L'est-il en régime variable ?

3.4. Divergence d'un produit vectoriel

Divergence d'un produit vectoriel

♥ 🔊

Hypothèse : \vec{A} et \vec{B} sont des fonctions de \mathbb{R}^3 dérivables.

$$\operatorname{div}\,\left(\vec{A}\wedge\vec{B}\right) = \left(\overrightarrow{rot}\;\vec{A}\right)\cdot\vec{B} - \vec{A}\cdot\left(\overrightarrow{rot}\;\vec{B}\right)$$

4. Laplacien scalaire

Le laplacien scalaire est un opérateur s'applicant aux champs scalaires et renvoyant un scalaire.

Laplacien scalaire

Hypothèse : f est une fonctions de classe \mathcal{C}^2 de \mathbb{R}^3 .

$$\Delta f = \operatorname{div}\left(\overrightarrow{grad}\ f\right) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

5. $\vec{A} \cdot \vec{grad}$

L'opérateur $\vec{A} \cdot \vec{grad}$ peut s'appliquer à un champ scalaire, il renvoie alors un scalaire.

L'opérateur $\vec{A} \cdot \vec{grad}$ peut s'appliquer à un champ vectoriel, il renvoie alors un vecteur.

$\vec{A} \cdot \vec{grad}$

Hypothèse : \vec{A} et f sont des fonctions de \mathbb{R}^3 dérivables.

$$\left(\vec{A}.\overrightarrow{grad}\right)f = A_x \frac{\partial f}{\partial x} + A_y \frac{\partial f}{\partial y} + A_z \frac{\partial f}{\partial z}$$

$$\left(\vec{A}.\overrightarrow{grad}\ \right)\vec{B} = A_x \frac{\partial \vec{B}}{\partial x} + A_y \frac{\partial \vec{B}}{\partial y} + A_z \frac{\partial \vec{B}}{\partial z}$$

6. Laplacien vectoriel

Le laplacien vectoriel est un opérateur s'appliquant aux champs vectoriels et renvoyant un vecteur.

Laplacien vectoriel

Hypothèse : \vec{A} est une fonctions de classe \mathcal{C}^2 de \mathbb{R}^3 .

$$\vec{\Delta} \vec{A} = \overrightarrow{grad} \ \Big(\text{div } \vec{A} \Big) - \overrightarrow{rot} \ \Big(\overrightarrow{rot} \ \vec{A} \Big) = \begin{pmatrix} \Delta A_x \\ \Delta A_y \\ \Delta A_z \end{pmatrix}$$

Le la placien vectoriel est parfois noté simplement Δ (sans flèche), le contexte per mettant de le distinguer du la placien scalaire.

APPLICATION

de

Montrer que la première composante de \overrightarrow{grad} (div \overrightarrow{A}) $-\overrightarrow{rot}$ (\overrightarrow{rot} \overrightarrow{A}) est bien ΔA_x .