Compétences

 Définir la particule de fluide comme un systéme mésoscopique de masse constante.

( Distinguer vitesse microscopique et vitesse mésoscopique.

( Définir une ligne de courant, un tube de courant.

[ Associer la dérivée particulaire du vecteur vitesse a ’accélération de la particule de fluide qui passe en
un point.

 Citer et utiliser ’expression de I’accélération avec le terme convectif sous la forme (17 : W) .

 Citer des ordres de grandeur des masses volumiques de I’eau et de ’air dans les conditions usuelles.

( Définir le débit massique et ’écrire comme le flux du vecteur pv a travers une surface orientée.

O Enoncer I'équation locale traduisant la conservation de la masse.

O Exploiter la conservation du débit massique le long d’un tube de courant.

 Définir le débit volumique et ’écrire comme le flux de ¥ & travers une surface orientée.

 Définir un écoulement incompressible et homogene par un champ de masse volumique constant et
uniforme et relier cette propriété a la conservation du volume pour un systeme fermé.

O Exploiter la conservation du débit volumique le long d’un tube de courant indéformable.

( Identifier la force de pression comme étant une action normale & la surface.

 Utiliser ’équivalent volumique des actions de pression —WP.

O Exprimer I’évolution de la pression avec l'altitude dans les cas d’'un fluide incompressible et de
I’atmosphere isotherme dans le modele du gaz parfait.

d Relier 'expression de la force surfacique de viscosité au profil de vitesse dans le cas d’un écoulement
parallele.

 Citer I'ordre de grandeur de la viscosité de 1’eau.

O Exploiter la condition d’adhérence a I'interface fluide-solide.

O Décrire les différents régimes d’écoulement (laminaire et turbulent).

 Relier le débit volumique a la vitesse débitante.

[ Décrire qualitativement les deux modes de transfert de quantité de mouvement : convection et diffusion.

O Interpréter le nombre de Reynolds comme le rapport d’un temps caractéristique de diffusion de quantité
de mouvement sur un temps caractéristique de convection.

3 Evaluer le nombre de Reynolds et 1'utiliser pour caractériser le régime d’écoulement.

1 Dans le cas d’un écoulement a bas nombre de Reynolds, établir la loi de Hagen-Poiseuille et en déduire
la résistance hydraulique.

O Exploiter le graphe de la chute de pression en fonction du nombre de Reynolds, pour un régime
d’écoulement quelconque.

d Exploiter un paramétrage adimensionné permettant de transposer des résultats expérimentaux ou
numériques sur des systémes similaires réalisés a des échelles différentes.

[ Associer une gamme de nombre de Reynolds & un modele de trainée linéaire ou un modele quadratique.

 Pour les écoulements a grand nombre de Reynolds, décrire qualitativement la notion de couche limite.

(d Définir et orienter les forces de portance et de trainée.

J Exploiter les graphes de C,, et C, en fonction de ’angle d’incidence.

Phénomeénes de transport 4
Fluide en écoulement

Questions de cours des interrogations orales

a
a
a

Dans le cas unidimensionnel, déterminer la dérivée particulaire d’une fonction scalaire. Généraliser a 3D.
Etablir ’équation locale de conservation de la masse.
Exprimer la résultante volumique des forces de pression dans le cas unidimensionnel. Généraliser a 3D.



Q Etablir Péquation fondamentale de I’hydrostatique. Etablir le champ de pression dans un fluide homogene
et incompressible au repos.

O Etablir équation fondamentale de 'hydrostatique. Etablir le champ de pression dans atmosphére en
la supposant isotherme etn assimilant I’air & un gaz parfait.

O Etablir la loi de Hagen—Poiseuille.
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Résumé du cours

1. Description de 1’écoulement d’un fluide
Un fluide est un milieu matériel parfaitement déformable. Les liquides et les gaz sont des fluides.

1.1. Notion de particule de fluide
A Déchelle microscopique, les particules qui composent un fluide sont animés de mouvements erratiques’.

Il y a deux fagons de définir un systéme mésoscopique :

¢ On peut définir un volume mésoscopique immobile, comme on I’a fait dans le chapitre diffusion de
particules. Un tel volume peut contenir un nombre de particules variable au cours du temps.

e On peut définir un volume mésoscopique qui contient toujours le méme nombre de particules (en
moyenne) et qui se déplace avec le fluide?. Ce systéme est appelé particule de fluide. Une particule de
fluide est un systéme fermé.

La masse d’une particule de fluide est donc constante.

1.2. Description eulérienne et champ de vitesse

La description eulérienne consiste a décrire le champ de vitesse, c’est-a-dire la vitesse du fluide a chaque
endroit de l'espace : ¥(M,t)

La vitesse en un méme point et a des instants différents ¥(M,t;) et 9(M,t,) est la vitesse de particules de

fluide différentes.

1.3. Tube de courant
Une ligne de courant est une courbe en tout point tangente au vecteur vitesse ¥(M,t) et orientée dans le

méme sens.

SCHEMA : Ligne de courant

\ J

En régime stationnaire, les lignes de courant sont immobiles. En régime stationnaire, les lignes de courant
sont les trajectoires des particules de fluide.

Attention : de maniére générale, les lignes de courant ne sont pas forcément les trajectoires des particules
de fluide.

1.4. Dérivée particulaire

Dérivée particulaire

Avec
Df . 6f 4 (17 grad )f . % le terme local
Dt 8t e U-grad le terme convectif

« v le champ de vitesse du fluide (ms—1)

'Erratique signifie aléatoire, qui vont dans tous les sens.
2Plus précisément, dont la vitesse est la vitesse moyenne des particules qui la composent.



1.5. Débit massique
Masses volumique & connaitre

Hypotheése : Dans les conditions normales de température et de
pression

Avec
O gy = 1L 10° kg m 3 « 4 la masse volumique (kgm™3)

Vecteur densité de courant de masse

Avec
e 7, le vecteur densité de courant de masse (kgm=2s71)
v le champ de vitesse du fluide (ms—1)

 u la masse volumique (kgm™3)

Débit massique

Avec
— - e D, le débit massique (kgs™*
D = po - dS 6 ¢ ique (kgs™)
o 4 la masse volumique (kgm™?)
S « v le champ de vitesse du fluide (ms—1)
APPLICATION &t
Le débit maximal de I’Odet a été mesuré le 13 décembre 2000. La vitesse (supposée uniforme) valait
4ms~!. Sa largeur est de 10m et sa profondeur 4 m. Déterminer le débit massique.

1.6. Débit volumique

Vecteur densité de courant de volume

Avec
e 7y le vecteur densité de courant de volume (ms™1)

s
<
Il
<L

« v le champ de vitesse du fluide (ms—1)

Débit volumique

N , Avec
DV = v-dS o Dy le débit volumique (m3s™!)
S

« v le champ de vitesse du fluide (ms™!)

APPLICATION

Le débit maximal de I’Odet a été mesuré le 13 décembre 2000. La vitesse (supposée uniforme) valait
4ms~!. Sa largeur est de 10 m et sa profondeur 4 m. Déterminer le débit volumique.

1.7. Conservation de la masse

La masse est une grandeur physique conservative.

Equation locale de conservation de la masse

Avec

o u la masse volumique (kgm™3)




Conservation du débit massique

Hypothese : Le régime est stationnaire Avec .
Le débit massique est le méme sur ° Dmlcdébit massique (kgs™)

. o u la masse volumique (kgm=3)
chaque section d’un tube de courant.

v le champ de vitesse du fluide (ms—1)

1.8. Ecoulement incompressible et homogéne

Le volume n’est pas nécessairement une grandeur conservative.

Si on compresse une seringue contenant un gaz, son volume diminue.

Dans un écoulement incompressible, le volume des particules de fluides ne change pas au cours du temps.
Dans un écoulement homogene, toutes les particules de fluide ont la méme masse volumique.

Dans un écoulement incompressible et homogene, la masse volumique p est uniforme® et stationnaire®.

Conservation du volume

Hypothéses :
e L'écoulement est incompressible
o L'écoulement est homogéne

Le volume se conserve.

Conservation du débit volumique

Hypothéses :
e L'écoulement est incompressible
o L'écoulement est homogéne

Le débit volumique est le méme sur chaque section d’un tube de courant.

. J

2. Actions de contact sur un fluide

2.1. Action normale et tangentielle

Les forces de contact s’exercant sur la surface d’une particule de fluide sont proportionnelles & sa surface.
Elles peuvent se décompose en

e une composante orthogonale & la surface (normale) appelée force de pression

e une composante tangentielle a la surface appelée force de viscosité

2.2. Forces de pression

Forces de pression

Avec
> = o 02F} la force de pression s’exercant sur une surface
2 _ P
o FP = PdS élémentaire (N)

o P la pression (Pa)

$Uniforme signifie qui ne dépend pas de la position : c¢’est le méme partout.
‘Stationnaire signifie qui ne dépend pas du temps : c’est le méme tout le temps.



Résultante volumique des forces de pression

Avec
> = o 03F, la force de pression s’exercant sur un volume
3 _ P
0 FP — gra’d pPdv élémentaire (N)

e P la pression (Pa)

Relation fondamentale de 1'hydrostatique

Hypothéses :
e Le fluide est au repos. Avec
o Les seules forces sont les forces de pression et le poids. e P la pression (Pa)
 u la masse volumique (kgm™3)
-7 — « g l'accélération de la pesanteur (ms—2
grad P = ug (ms™)

APPLICATION

APPLICATION

Déterminer le champ de pression dans I’atmospheére la supposant immobile et isotherme et en assimilant
I’air & un gaz parfait.

2.3. Forces tangentielles

La force tangentielle est due a la viscosité du fluide.

ScHEMA : Forces de viscosité sur une surface élémentaire

Forces de viscosité

Hypothéses :

o Le fluide est newtonien.
. . . Avec
o Le champ de vitesse est U = v(y)é,. 7 o )
, . . N o 0°F, la force de viscosité s’exercant sur une surface
o La surface sur laquelle s’exerce la force est orientée selon €. o .
élémentaire (N)

P o 7 la viscosité dynamique (P1="Pas)
52}7;) — a_v dSé’m « v le champ de vitesse du fluide (ms™!)
Y

Cette formule doit étre adaptée en fonction des axes du probléme.

APPLICATION

Vérifier '’homogénéité de cette relation.



Viscosité de 1'eau

Hypothese : A 20°C
Avec

—1. 10_3 Pl e 7 la viscosité dynamique (Pl =Pas)

neau

Résultante volumique des forces de viscosité

. . Avec
IR & e D O B G o 03F larésultante de viscosité s’exercant sur un volume
N élémentaire (N)
(5317;} = nA’l_j dV o 7 la viscosité dynamique (P1="Pas)

« v le champ de vitesse du fluide (ms—1)

Comme la force ne peut pas diverger, le champ de vitesse est dérivable donc continu.

En particulier, la vitesse d’un fluide au voisinage immédiat d’un solide est la vitesse du solide. Cette
condition est appelée condition d’adhérence fluide-solide.

APPLICATION £17

Appliquer la loi de la quantité de mouvement sur une particule de fluide soumise aux forces de pression,
de viscosité (fluide newtonien) et au poids. Cette équation (simplifiée par dV') est appelée équation de
Navier-Stockes.

APPLICATION #,18

Ecoulement de Couette-plan : un fluide est en écoulement stationnaire entre deux plaques paralléles,
Pune immobile (en z = 0) et I'autre animée d’une vitesse V = V&, (en z = a). On néglige les effets
de la gravité et on suppose la pression uniforme. Déterminer le champ de vitesse dans le fluide. On
supposera que la vitesse ne dépend que de z et qu’elle est selon z : ¥ = v(2)€,.

3. Ecoulement interne incompressible et homogéne dans une conduite cylin-
drique

On s’intéresse a un écoulement a 'intérieur d’une conduite cylindrique.

Eau dans le réseau d’eau potable.

3.1. Vitesse débitante

La vitesse débitante est la vitesse qu’aurait le fluide si le champ de vitesse était uniforme tout en conservant

le méme débit volumique.

Avec
U — DV o U la vitesse débitante (ms™!)
T S e Dy le débit volumique (m3s™1)

o S la section de la conduite (m?)




3.2. Régimes d’écoulement

https://youtu.be/eD7LdS6bfOQ

Reynolds a mis en évidence expérimentalement deux régimes d’écoulement.

SCHEMA : Expérience de Reynolds

\ J

En fonction du débit, on peut observer

le régiment laminaire dans lequel les lignes de courant sont stationnaires, pour des vitesses débitantes
faibles

le régime turbulent dans lequel les lignes de courant se déforment, pour des vitesses débitantes
importantes.

Les deux régimes d’écoulement différent par le mode de transport de quantité de mouvement prépondérant.

3.3. Transport de quantité de mouvement par diffusion

Dans le régime laminaire, la quantité de mouvement est essentiellement transportée par diffusion.

Vecteur densité de courant de quantité de mouvement diffusé

Avec

Hypothése : Le fluide est newtonien.  Jpaifr le vecteur densité de courant de quantité de

mouvement diffusée (kgmsm2s71)

o v = % la viscosité cinématique (m?s~1)

jp,dz’ff = —vgrad (uv)

o u la masse volumique (kgm™3)
« v le champ de vitesse du fluide (ms™1)

Temps caractéristique de diffusion de quantité de mouvement

9 Avec
L o Ty la durée caractéristique associée a la diffusion ('s)
. S ——— . . N
Taif U e L une longueur caractéristique du probléme (m)
o V= g la viscosité cinématique (m?s~!)
\ J

3.4. Transport de quantité de mouvement par convection

Dans le régime turbulent, la quantité de mouvement est essentiellement transportée par convection.

Vecteur densité de courant de quantité de mouvement

Avec
. . * Jpconw 1€ vecteur densité de courant de quantité de
Jp,cony — KUV mouvement convectée (kgms—2m2s71)

 u la masse volumique (kgm=3)

« v le champ de vitesse du fluide (ms™1)



https://youtu.be/eD7LdS6bfOQ

Temps caractéristique de convection de quantité de mouvement

o T.n la durée caractéristique associée a la convection

L (s
Teonv ™ ? e L une longueur caractéristique du probléme (m)
e 7 un ordre de grandeur de la vitesse de 1’écoulement
(ms™)

3.5. Nombre de Reynolds
Le nombre de Reynolds est une grandeur adimensionnée qui sert a comparer l'importance relative du
transport de quantité de mouvement par convection et par diffusion.

Nombre de Reynolds

Avec
Elpoiiese § e et eof weioien e R, le nombre de Reynolds (sans unité)
e L une longueur caractéristique du probléme (m)
R — 7L e 7 un ordre de grandeur de la vitesse de I’écoulement
& (ms™1)

o U= % la viscosité cinématique (m?s~?1)
| S

Dans le cas d’un écoulement interne, L désigne le diameétre de la conduite.

Dans le cadre d’un écoulement interne & une conduite cylindrique, la longueur caractéristique d est le
diametre de la conduite et I'ordre de grandeur de la vitesse est la vitesse débitante.

APPLICATION

De I’eau a 20 °C circule dans une conduite de diametre 5 cm et de longueur 30 m a la vitesse débitante
de 0.1ms™!. Calculer le nombre de Reynolds.

Diffusion vs convection

Hypothese : le fluide est newtonien

Avec
e R, le nombre de Reynolds (sans unité)
N
. T la durée caractéristique associée a la diffusion (s
Tdiff ij,conv ” 0 e , o C (s)
Re o T.nv la durée caractéristique associée a la convection
7_ —_
conv H.]p,conv ” (s)
. J

Expérimentalement, on peut établir le seuil de passage d’un régime laminaire a un régime turbulent.

Seuil de turbulence v

Hypothéses :
e Le fluide est newtonien
o L'écoulement est interne a une conduite

*Si R, <2000 I’écoulement est lami- Avec

naire e R, le nombre de Reynolds (sans unité)

* Si R, > 2000 l’écoulement est turbu-
lent

APPLICATION

De I'eau a 20 °C circule dans une conduite de diameétre 5 cm et de longueur 30 m a la vitesse débitante
de 0.1ms 1. L’écoulement est-il laminaire ou turbulent ?



3.6. Chute de pression dans une conduite horizontale a faible nombre de Reynolds

Dans un écoulement interne laminaire, la chute de pression entre les deux extrémités d’une conduite
cylindrique est donnée par la loi de Hagen—Poiseuille.

Loi de Hagen—Poiseuille

Hypotheéses :
e Le fluide est newtonien.

e La conduite est horizontale.

o L'effet de la gravité€ est négligé. £Avec

e [L'écoulement est laminaire. * Dy le débit volumique (m?s™)

o Le régime est stationnaire. e R le rayon de la conduite (m)

e Le champ de pression ne dépend que de x. > 1 la yiscostic dynamique’ (Pl =Eas)

e Les effets de bord sont négligés. e [ la longueur de la conduite (m)

e AP la différence de pression entre les extrémités de la
conduite (Pa)

R4
D, = —AP
VT 8nl

Par analogie avec 1’électrocinétique, on peut définir la résistance hydraulique.

Résistance hydraulique

Hypotheses :
o Le fluide est newtonien.
e La conduite est horizontale.

o L'effet de la gravité est négligé. Avec
o L'écoulement est laminaire. e AP la différence de pression entre les extrémités de la
conduite (Pa)
AP = RHDV e Ry la résistance hydraulique (Pasm™3)

e Dy, le débit volumique (m3s1)
o 7 la viscosité dynamique (Pl ="Pas)
avec e [ la longueur de la conduite (m)
e R le rayon de la conduite (m)
8nl
R H —

- 7TR4

\. J

APPLICATION #28

De I’'eau a 20 °C circule dans une conduite de diametre 5 cm et de longueur 30 m a la vitesse débitante

de 0.01ms~!. Quelle est la chute de pression entre les deux extrémités de la conduite ?

3.7. Chute de pression pour un écoulement quelconque

Lorsque I’écoulement n’est pas laminaire, la loi de Hagen-Poiseuille n’est plus vraie. Il est alors nécessaire

de s’en remettre aux données expérimentales qui sont résumées sur un diagramme appelé diagramme de
Moody.
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Diagramme de Moody
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APPLICATION

Calculer le maitre couple dans la direction du mouvement pour la voiture ci-dessous. On pourra
approximer la voiture & un parallélépipéde rectangle pour faire les calculs.

1439 mm

- ——>
e 1798 mm

(1988 mm)

Force de trainée

Hypotheses :
o Le fluide est newtonien. Avec
o L'écoulement est stationnaire. o F la force de trainée (N)
o L'objet est en mouvement rectiligne uniforme. + p la masse volumique (kgm™?)
« v le champ de vitesse du fluide (ms™!)
N 1 5 e S, le maitre-couple selon z (m?)
— . A 7 oy 7
F z = —5 Juay) S:E Owu o C, le coefficient de trainée (sans unité)
\ J
Le coefficient de trainée dépend de la forme de I'objet et du nombre de Reynolds.
4.2. Cas d’une sphere
100 7 , ; ; , . 7 100
o Cx de la sphere oy ox
x de 1a sphere 0O
avec.
T: Trainée [N]
p : Masse volumique fluide [kg/m?]
V: Vitesse relative du fluide [m/s]
10 S;: Surface frontale [m?] - 10
0.2mm
Régime de Stokes \\ \
Effets visqueux dominants
| Brouillard et pluie
Balle de tennis
1 N\ / 1
1mm
| >mm . 10'3'"'"
it
/ \
] \
{(/Ballede goif . 1 4 Balle de foot @
Cx de la sphére lisse / L
courbe standard d'aprés les équations de
Clift, Grace et Weber
0.1 : T 0.1
A diverses rugosités [|/|”
d'aprés Achenbach —Z}—" ®
1
Les rugosités relatives étudiées par Achenbach
® :1250.10% ; (D: 500.10%; (3): 150.10%; (@) : 25.10°.
Rugosité relative : quotient de la hauteur moyenne des
aspérités (depuis les sommets jusqu’au fond des creux) par
la dimension caractéristique du corps (ici son diametre)
0.01 0.01
1 Re = V.D/ 1 10 100 1000 10 000 100 000 1000 000 10 000 000 100 000 000
=V.Dlv
e A b A Nombre de Reynolds

v : Viscosité cinématique du fluide [m?s]

diamétral de la sphére [-]
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Le coefficient de trainée de la sphere est tracé en fonction du nombre de Reynolds dans la courbe en annexe.
On peut y voir plusieurs parties.

4.2.1. Faible Reynolds
Pour R, < 1, le graphe s’approche d’une droite (en échelle logarithmique) d’équation C, = }22—4.

Force de trainée linéaire

Hypotheses :
o Le fluide est newtonien. Avec
e R <1 o E, la force de trainée (N)
 « le coefficient de frottement (Nsm™1)
= — e v le champ de vitesse du fluide (ms™?
~ J

4.2.2. Haut Reynolds
Pour R, € [2000,200000], C, est constant.

Force de trainée quadratique

Hypotheses :
o Le fluide est newtonien Avec
e R, €[2000,200000] o E, la force de trainée (N)
o (3 le coefficient de frottement (Ns?m~2)
= = e v le champ de vitesse du fluide (ms™?

4.3. Forces de trainée et de portance sur une aile d’avion

Sur certains objets, la force de trainée s’accompagne d’une force de portance.

Force de portance v

Avec
1 o F, la force de portance (N)
) = « u la masse volumique (kgm=3)
FZ _ 2 i SZ CZ E « v le champ de vitesse du fluide (ms—1)
e S, le maitre couple selon z (m?)

o C, le coefficient de portance (sans unité)

\.

EXEMPLE

Aile d’avion, voile de bateau.

.

La force de trainée est colinéaire a la vitesse de 'objet. La force de portance est orthogonale a la vitesse
de l’objet.

SCHEMA : Trainée, portance et angle d'incidence
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La trainée et la portance dépendent de ’angle d’incidence. Les courbes ci-dessous présentent un exemple
de dépendance pour une aile d’avion.

180 —
Attached \ Separating > Stalled
160 [—

140 —

1.20 [—

Cz/Cx

(1/10 scale)

1.00 —

080 —

Coefficient

0.60 |—

040 [—

020 —

—
, L 1 | T=p—p
0 10 20 30 40 50 60 70 80 90 100
Angle of Attack (a)

4.4. Couche limite

Dans un écoulement & haut nombre de Reynolds, ou le transport de quantité de mouvement se fait
essentiellement par convection, la viscosité du fluide a une influence sur la force subie par un objet. Pour
expliquer cet apparent paradoxe, on introduit la couche limite.

Dans un écoulement a haut nombre de Reynolds, il existe des zones ou le transport de quantité de
mouvement se fait essentiellement par diffusion. Ces zones sont appelées couches limites. Ces zones sont de
faible épaisseur et situées a proximité immédiate des objets.

ScHEMA : Couche limite
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Méthodes

1. Appliquer le théoréeme de la résultante cinétique a une particule de fluide
1. Faire le bilan des forces

« Forces de pression (résultante —grad P dV)

o Forces de viscosité (résultante nAv pour un fluide newtonien)

o D’autres forces éventuelles (poids, ...)
2. Ecrire le TRC 4 la particule de fluide (attention, l'accélération comporte 2 termes : le terme local et le

terme convectif)

2. Lire un diagramme de Moody
1. (seulement si R, > 2000) Déterminer sur quelles courbes on va se placer grace a la rugosité.
2. Passer des grandeurs de I’énoncé aux grandeurs adimensionnées.

3. Lire sur la courbe.
4. Passer des grandeurs adimensionnées lues sur la courbes aux grandeurs demandées.

15



Exercices

1. Troposphere
La troposphere est la partie inférieure de I’atmospheére, située sous 11km d’altitude. On note (Oz) l'axe
vertical ascendant, dont I'origine est au niveau de la mer.

On suppose dans un premier temps que la température est uniforme dans la troposphere.

1/ Déterminer I'expression de la pression P en fonction de l'altitude z, en fonction de la température T,

de la masse molaire de I’air M., de la constante des gaz parfaits R et de l'accélération de la pesanteur g.

air?
On note R, la pression au niveau de la mer.

2/ Montrer que 70 % de la masse totale de lair se situe en dessous de 10km dans ce modéle.
On renonce a ’hypothese isotherme pour passer a une atmosphere adiabatique.
3/ Les capacités thermiques molaires de air sont Cy, = gR et Cp = %R. Exprimer la valeur du coefficient +.

4/ Montrer que le produit 7% PY est constant pour une transformation réversible et adiabatique d’'un gaz
parfait. Exprimer x et y en fonction de 7.

Ao . . dP . dT
5/ En déduire la relation reliant <5 et %
6/ Etablir I'expression du gradient de température adiabatique % en fonction de v, M, g et R.
7/ Quelle température fait-il en haut de la troposphére dans ce modele adiabatique ?

2. Lubrification

Le but de cet exercice est de comprendre I'intérét de la lubrification. On considére un mobile parallélépi-
pédique de masse M = 30kg en translation sur un support horizontal.

—

€y

<l

—

> ¢,

Fig. 5. — Mobile en frottement solide avec son support.

Dans un premier temps, on étudie le contact sec entre le pavé et la surface. La force de frottement est de
type frottement solide. Il obéit a la loi de Coulomb : Ry = fRy avec un coefficient f =0.20. En z =0,
v=1vy=10kmh™!.

1/ Calculer la valeur numérique de la réaction tangentielle.
2/ Calculer la distance d’arrét du mobile et faire ’application numérique.

—

€y

<

—

> €,

Fig. 6. — Mobile sur une couche de fluide.

On introduit maintenant une couche d’huile d’épaisseur e = 1.0 mm entre la mobile et la surface. On suppose
que le régime est permanent (un opérateur maintient la vitesse du palet constante) et que la vitesse du

16



fluide s’écrit ¥ = v(zx,y)é,. On néglige les effets de bords. La surface du mobile en contact avec 1’huile est
S = 400 cm?. Le mobile a une vitesse v,,, = v, = 10kmh™!.

2 1

La densité de I’huile est 0.9 et sa viscosité cinématique est 60 - 1076 m?2 s~1.

3/ Calculer la viscosité dynamique de 1’huile.

4/ Montrer que v(z,y) est indépendant de z.

5/ On admet que la vitesse s’écrit v(y) = ay + b. Déterminer a et b en exploitant la description du probléeme.
6/ Donner 'expression de la force surfacique de cisaillement au sein de 1’eau.

7/ Exprimer la force de frottement a laquelle est soumis la pavé.

8/ On admet qu’en I'absence d’action de 'opérateur pour maintenir la vitesse constante, ’expression de la
vitesse établie précédemment reste valable, mais avec a fonction du temps. Que devient la distance d’arrét
du palet ?

3. Conduite plate
On s’intéresse & une conduite plate d’épaisseur e, de largeur [ > e et de longueur L dans laquelle circule
un fluide incompressible et homogéne de viscosité dynamique 7 et de masse volumique u.

Le champ de vitesse est noté v = ve,

La conduite est délimitée par les plans d’équation z = £, z = —%,

55 z=getz=—5.

N

—

Les effets de la gravité sont négligés et on suppose que le gradient de pression est uniforme et selon €,

z
A

1/ Déterminer I’équation aux dérivées partielles vérifiée par le champ de vitesse dans la conduite.
2/ Quelles sont les conditions aux limites vérifiées par le champ de vitesse 7

3/ On suppose ’écoulement laminaire et en régime stationnaire. Les effets de bord sont négligés. Justifier

—

que ¥ = v(2)€,
4/ Etablir le profil de vitesse dans la conduite.
5/ Exprimer le débit volumique dans la conduite en fonction de [, e, n et ‘?9—};.

6/ Calculer la résistance hydraulique de cette conduite plate pour e = 1mm, L = 2m et [ = 2cm et dans
laquelle circule de ’eau a 20 °C.

4. Distribution d'eau potable
Un chateau d’eau de hauteur h = 25m, alimente un village en eau potable. On suppose 1’écoulement
incompressible et homogeéne.
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\J

L

1/ Quelle pression P, qui peut étre attendue au pied du chateau d’eau, en admettant que le débit de 'eau
dans la canalisation soit suffisamment faible pour ne pas impacter la pression ?

2/ Soit une conduite de longueur L = 100m et de section S = 1cm? partant du pied de ce chiteau
d’eau. L’autre extrémité est a ’air libre. Quel débit peut-on attendre, en supposant a priori I’écoulement
laminaire 7 Calculer la vitesse débitante U.

3/ Calculer le nombre de Reynolds pour cet écoulement. La modélisation précédente est-elle correcte ?

4/ En utilisant le diagramme de Moody, dire si la vitesse débitante sera plus ou moins importante que celle
calculée plus haut.

5. ¢ J’explique 4 ma tante : Analogie hydraulique

Le but de cet exercice est de vous faire expliquer un concept/phénomeéne avec des mots simples et courants
(pas de vocabulaire technique ou scientifique) a une personne de votre entourage. Tachez de faire simple
et court, utilisez des analogies avec des choses connues. Vous pouvez vous inspirer de Ma thése en 180

secondes. Profitez-en pour prendre des nouvelles !
On introduit souvent 1’électricité en continu en faisant une analogie avec 'hydraulique.

Expliquer, en procédant par analogie avec 1I’hydraulique, les bases de 1I’électricité: qu’est-ce
9 9
qu’une tension, un courant, une résistance.

6. Poteau d'incendie xx

Cet exercice est un probléeme ouvert. Il nécessite de prendre des initiatives et de faire des choix dans la
modélisation. Des approximations et des estimations sont souvent nécessaires pour arriver ¢ une solution.

.
- &

-1

Les poteaux d’incendie doivent pouvoir délivrer un débit de 30 m3 h~' minimum sous une pression dyna-

mique de 1 bar minimum.
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Un chateau d’eau de 20m de haut alimente un village en eau par une conduite en fonte de diameétre
intérieur 200 mm et de longueur 3km puis par une conduite en fonte de diameétre intérieur 150 mm et de
longueur 2 km.

On pourra utiliser le diagramme de Moody du cours.

Les poteaux d’incendie sont-ils aux normes ou est-il nécessaire d’installer des bassins de
stockage supplémentaires dans le village 7

7. Chute d'une bille dans un fluide tres visqueux
On s’intéresse a une bille d’acier sphérique de rayon R, de masse m, de masse volumique p,., =
7850kgm~3, de vitesse ¥ = —vé, lachée sans vitesse initiale dans une éprouvette remplie de glycérine (de

masse volumique pgycerine = 1260 kg m~3 et de viscosité de ordre de n ~ 10° Pas).

o pglycérinc

Le champ de pesanteur g est uniforme. On pose ¢’ = <1 ) L’axe (Oz) est vertical ascendant.

Pacier
L’éprouvette est de diametre tres supérieur a celui de la bille. La force de frottements visqueux exercée par
le fluide sur la bille est F' = —6mnR.

1/ Déterminer I’équation différentielle vérifiée par la vitesse v de la bille.
2/ Calculer la durée caractéristique 7 associée a I’équation différentielle pour R = 1.5 mm
3/ Exprimer la vitesse limite en fonction de R, ¢’, pyier €t -

4/ On mesure vy 4, la norme de la vitesse une seconde apres avoir laché la bille pour différentes tailles de
bille. La courbe ci-dessous montre 1’évolution de v, 4, en fonction de R?. En déduire la valeur de la viscosité
n de la glycérine.

0.03

1

]

0.02

U1 (ms_l)

2 |
1

R? (mm?)
5/ Calculer le nombre de Reynolds pour la plus grosse sphére. Est-il 1égitime de considérer des frottements

fluides linéaires ?

8. Chute d'une bille dans un fluide peu visqueux
On lache sans vitesse initiale une bille sphérique de rayon R, de masse m, dans un liquide visqueux, de
masse volumique p tres faible devant celle de la bille, et de viscosité cinématique v.

On suppose la pesanteur uniforme, et on note 9(t) = —v(t)€, la norme de la vitesse de la bille.
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On suppose que le nombre de Reynolds est compris entre 2-10% et 2-10°. Dans ce cas, le coefficient de
trainée d’une sphere est C, = 0.47.

1/ Exprimer la force de frottement fluide sur la bille.

2/ Etablir I'équation différentielle vérifiée par v(t) ?

3/ Etablir I'expression de la vitesse limite vy, atteinte par la bille.

4/ On cherche a résoudre numériquement 1’équation différentielle pour obtenir v(t).

Compléter le code Python suivant pour simuler la chute de la bille.

from math import pi

from scipy.integrate import solve_ivp

R = 0.01 # rayon de la bille en m

m = 0.1 # masse de la bille en kg

mu = 1 # masse volumique du fluide en kg/m~3

Cx = 0.47 # coefficient de trainée

g = 9.81 # accélération due & la pesanteur en m/s”2

def dvdt(t, v): # renvoie la dérivée de la vitesse

v0O = 0 # vitesse initiale en m/s

sol = solve_ivp(dvdt, (0,10), [v0])
t = sol.t
v = sol.y[0]

5/ Tracer la vitesse de la bille en fonction du temps.
6/ Expliquer pourquoi la modélisation proposée pose probléme aux premiers instants du mouvement.

7/ Des relevés expérimentaux du coefficient de trainée en fonction du nombre de Reynolds sont donnés
dans un fichier téléchargeable a ’adresse suivante

https://nuage03.apps.education.fr/index.php/s/
APPGg6586cnHELy

Compléter le code Python suivant pour calculer la force de trainée a partir de ces données expérimentales.

import numpy as np

data = np.loadtxt('Cx-Re.csv', delimiter=',', skiprows=1)
Re_exp = ... # premiére colonne de data
Cx_exp = . # deuxiéme colonne de data

eta = 1.85e-5 # viscosité dynamique de 1l'ai en Pa.s

def Fx(v):

Re = ...

Cx = np.interp(Re, Re_exp, Cx_exp) # interpolation du coefficient de trainée & partir des données
expérimentales

return ...

8/ Modeifier le code de la question 4 pour prendre en compte cette nouvelle expression de la force de trainée,
et tracer la vitesse de la bille en fonction du temps.
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9. ¢ J’explique 4 mon grand-pére : Voilier au preés

Le but de cet exercice est de vous faire expliquer un concept/phénoméne avec des mots simples et courants
(pas de vocabulaire technique ou scientifique) a une personne de votre entourage. Tachez de faire simple
et court, utilisez des analogies avec des choses connues. Vous pouvez vous inspirer de Ma thése en 180

secondes. Profitez-en pour prendre des nouvelles !

100°

reaching“AAAAAK\\\\\\‘

Les voiliers sont capables de remonter au vent. Expliquer comment c’est possible.

10. Tir cadré 7 =
On étudie un tir au football. La vitesse initiale du ballon est de 20ms™! selon I'axe x (horizontal) et de
12ms~! selon I'axe z (vertical). Le ballon est sur le sol juste avant le tir.

Dans un premier temps, on ne prend en compte que la gravité.
1/ Etablie I'équation différentielle vérifiée par la vitesse & du ballon. Exprimer la dérivée de la vitesse.

On résout numériquement 1’équation différentielle en utilisant la fonction solve_ivp de la bibliotheque
scipy.integrate.

2/ Compléter le code suivant.

from scipy.integrate import solve_ivp, trapezoid

import numpy as np

g =9.81 # m/s"2
rho = 1.2 # kg/m™3
vO = np.array([20, 0, 12]) # m/s

def dv_dt(t, v):
a = ... # accélération

return a

sol = solve_ivp(dv_dt, [0, 2], vO, max_step=0.01)

t = sol.t
vx = sol.y[0, :]
vy = sol.y[1, :]

vz = sol.y[2, :]

Il est maintenant nécessaire de calculer la position du ballon en intégrant la vitesse en utilisant la méthode
des rectangles.
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3/ Compléter le code suivant. Attention, les temps calculés par la fonction solve_ivp ne sont pas forcément
régulierement espacés.

x = [0]

y = [0]

z = [0]

for i in range(l, len(sol.t)):
x.append(...)
y.append(...)
z.append(...)

Pour vérifier si le tir est cadré, on trace la trajectoire du ballon grace au code suivant.

fig = plt.figure()
ax = fig.add_subplot(111l, projection="3d")

ax.plot(x, y, z)

# Tracé des cages
x_cages = 14.5
y_cages = 0.3
1_cages = 7.32
h_cages = 2.44
ax.plot(
[x_cages]*4,
[y_cages, y_cages, y_cages + 1_cages, y_cages + 1_cages],
[0, h_cages, h_cages, 0],
color="orange")

# Mise en forme
ax.set_xlabel("x (m)")
ax.set_ylabel("y (m)")
ax.set_zlabel("z (m)")
ax.set_title("Trajectoire 3D")
ax.set_z1im(0, max(z)*1.1)

plt.tight_layout()
plt.show()

4/ Le tir est-il cadré ?

On prend maintenant en compte les frottements avec I’air. On donne les valeurs numériques suivantes : p =
1.2kgm™3, C, =047, R=0.11m et m = 145¢g

5/ Modifier la fonction dv_dt pour inclure la force de trainée.
On pourra utiliser la fonction np.1linalg.norm(v) pour calculer la norme du vecteur vitesse v.
Le tir est-il maintenant cadré ?

Le footballeur a mis de l'effet dans la balle en lui imprimant une rotation de £ = 100 min~! autour de
I'axe (Oz). Cette rotation engendre une force de portance appelée force de Magnus et s’exprimant comme
%CpRSQ AU aveec C =~ 1.

6/ Modifier la fonction dv_dt pour inclure la force de Magnus.

Le tir est-il maintenant cadré 7
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