
Phénomènes de transport 4
Fluide en écoulement

Compétences
o Définir la particule de fluide comme un système mésoscopique de masse constante.
o Distinguer vitesse microscopique et vitesse mésoscopique.
o Définir une ligne de courant, un tube de courant.
o Associer la dérivée particulaire du vecteur vitesse à l’accélération de la particule de fluide qui passe en 

un point.
o Citer et utiliser l’expression de l’accélération avec le terme convectif sous la forme ( ⃗𝑣 ⋅ 𝑔𝑟𝑎𝑑 ) ⃗𝑣.
o Citer des ordres de grandeur des masses volumiques de l’eau et de l’air dans les conditions usuelles.
o Définir le débit massique et l’écrire comme le flux du vecteur 𝜇 ⃗𝑣 à travers une surface orientée.
o Énoncer l’équation locale traduisant la conservation de la masse.
o Exploiter la conservation du débit massique le long d’un tube de courant.
o Définir le débit volumique et l’écrire comme le flux de ⃗𝑣 à travers une surface orientée.
o Définir un écoulement incompressible et homogène par un champ de masse volumique constant et 

uniforme et relier cette propriété à la conservation du volume pour un système fermé.
o Exploiter la conservation du débit volumique le long d’un tube de courant indéformable.
o Identifier la force de pression comme étant une action normale à la surface.
o Utiliser l’équivalent volumique des actions de pression − 𝑔𝑟𝑎𝑑 𝑃 .
o Exprimer l’évolution de la pression avec l’altitude dans les cas d’un fluide incompressible et de 

l’atmosphère isotherme dans le modèle du gaz parfait.
o Relier l’expression de la force surfacique de viscosité au profil de vitesse dans le cas d’un écoulement 

parallèle.
o Citer l’ordre de grandeur de la viscosité de l’eau.
o Exploiter la condition d’adhérence à l’interface fluide-solide.
o Décrire les différents régimes d’écoulement (laminaire et turbulent).
o Relier le débit volumique à la vitesse débitante.
o Décrire qualitativement les deux modes de transfert de quantité de mouvement : convection et diffusion.
o Interpréter le nombre de Reynolds comme le rapport d’un temps caractéristique de diffusion de quantité 

de mouvement sur un temps caractéristique de convection.
o Évaluer le nombre de Reynolds et l’utiliser pour caractériser le régime d’écoulement.
o Dans le cas d’un écoulement à bas nombre de Reynolds, établir la loi de Hagen-Poiseuille et en déduire 

la résistance hydraulique.
o Exploiter le graphe de la chute de pression en fonction du nombre de Reynolds, pour un régime 

d’écoulement quelconque.
o Exploiter un paramétrage adimensionné permettant de transposer des résultats expérimentaux ou 

numériques sur des systèmes similaires réalisés à des échelles différentes.
o Associer une gamme de nombre de Reynolds à un modèle de traînée linéaire ou un modèle quadratique.
o Pour les écoulements à grand nombre de Reynolds, décrire qualitativement la notion de couche limite.
o Définir et orienter les forces de portance et de traînée.
o Exploiter les graphes de 𝐶𝑥 et 𝐶𝑧 en fonction de l’angle d’incidence.

Questions de cours des interrogations orales
o Dans le cas unidimensionnel, déterminer la dérivée particulaire d’une fonction scalaire. Généraliser à 3D.
o Établir l’équation locale de conservation de la masse.
o Exprimer la résultante volumique des forces de pression dans le cas unidimensionnel. Généraliser à 3D.
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o Établir l’équation fondamentale de l’hydrostatique. Établir le champ de pression dans un fluide homogène 
et incompressible au repos.

o Établir l’équation fondamentale de l’hydrostatique. Établir le champ de pression dans l’atmosphère en 
la supposant isotherme etn assimilant l’air à un gaz parfait.

o Établir la loi de Hagen–Poiseuille.

Entrainements
o 25.1 o 25.2 o 25.3 o 25.4 o 25.5 o 25.6 o 25.7 o 25.8 o 25.9 o 25.10

o 25.11 o 25.12 o 25.13 o 25.14 o 25.15 o 25.16 o 26.1 o 26.2 o 26.3 o 26.4

o 26.5 o 26.6 o 26.7 o 26.8 o 26.9 o 26.10 o 26.11 o 26.12 o 26.13 o 26.14

Exercices
o Exercice 1 o Exercice 2 o Exercice 3 o Exercice 4 o Exercice 5 o Exercice 6

o Exercice 7 o Exercice 8 o Exercice 9 o Exercice 10

Devoirs maison
o DM 1
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Résumé du cours

1. Description de l’écoulement d’un fluide
Un fluide est un milieu matériel parfaitement déformable. Les liquides et les gaz sont des fluides.

1.1. Notion de particule de fluide
À l’échelle microscopique, les particules qui composent un fluide sont animés de mouvements erratiques1.

Il y a deux façons de définir un système mésoscopique :

• On peut définir un volume mésoscopique immobile, comme on l’a fait dans le chapitre diffusion de 
particules. Un tel volume peut contenir un nombre de particules variable au cours du temps.

• On peut définir un volume mésoscopique qui contient toujours le même nombre de particules (en 
moyenne) et qui se déplace avec le fluide2. Ce système est appelé particule de fluide. Une particule de 
fluide est un système fermé.

La masse d’une particule de fluide est donc constante.

1.2. Description eulérienne et champ de vitesse
La description eulérienne consiste à décrire le champ de vitesse, c’est-à-dire la vitesse du fluide à chaque 
endroit de l’espace : ⃗𝑣(𝑀, 𝑡)

La vitesse en un même point et à des instants différents ⃗𝑣(𝑀, 𝑡1) et ⃗𝑣(𝑀, 𝑡2) est la vitesse de particules de 
fluide différentes.

1.3. Tube de courant
Une ligne de courant est une courbe en tout point tangente au vecteur vitesse ⃗𝑣(𝑀, 𝑡) et orientée dans le 
même sens.

Schéma : Ligne de courant

En régime stationnaire, les lignes de courant sont immobiles. En régime stationnaire, les lignes de courant 
sont les trajectoires des particules de fluide.

Attention : de manière générale, les lignes de courant ne sont pas forcément les trajectoires des particules 
de fluide.

1.4. Dérivée particulaire

Dérivée particulaire ♥︎ -1

D𝑓
D𝑡

= 𝜕𝑓
𝜕𝑡

+ ( ⃗𝑣 ⋅ 𝑔𝑟𝑎𝑑 )𝑓
Avec
• 𝜕

𝜕𝑡  le terme local
• ⃗𝑣 ⋅ 𝑔𝑟𝑎𝑑  le terme convectif
• 𝑣 le champ de vitesse du fluide ( m s−1)

1Erratique signifie aléatoire, qui vont dans tous les sens.
2Plus précisément, dont la vitesse est la vitesse moyenne des particules qui la composent.
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1.5. Débit massique

Masses volumique à connaître ♥︎

Hypothèse : Dans les conditions normales de température et de 
pression

• 𝜇eau = 1 ⋅ 103 kg m−3

• 𝜇air = 1 kg m−3

Avec
• 𝜇 la masse volumique ( kg m−3)

Vecteur densité de courant de masse ♥︎ -2

⃗𝑗𝑚 = 𝜇 ⃗𝑣
Avec
• ⃗𝑗𝑚 le vecteur densité de courant de masse ( kg m−2 s−1)
• 𝑣 le champ de vitesse du fluide ( m s−1)
• 𝜇 la masse volumique ( kg m−3)

Débit massique ♥︎ -3

𝐷𝑚 = ∬
𝑆

𝜇 ⃗𝑣 ⋅ d𝑆
Avec
• 𝐷𝑚 le débit massique ( kg s−1)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Application -
4

Le débit maximal de l’Odet a été mesuré le 13 décembre 2000. La vitesse (supposée uniforme) valait 
4 m s−1. Sa largeur est de 10 m et sa profondeur 4 m. Déterminer le débit massique.

1.6. Débit volumique

Vecteur densité de courant de volume ♥︎ -5

⃗𝑗𝑉 = ⃗𝑣
Avec
• ⃗𝑗𝑉  le vecteur densité de courant de volume ( m s−1)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Débit volumique ♥︎ -6

𝐷𝑉 = ∬
𝑆

⃗𝑣 ⋅ d𝑆
Avec
• 𝐷𝑉  le débit volumique ( m3 s−1)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Application -
7

Le débit maximal de l’Odet a été mesuré le 13 décembre 2000. La vitesse (supposée uniforme) valait 
4 m s−1. Sa largeur est de 10 m et sa profondeur 4 m. Déterminer le débit volumique.

1.7. Conservation de la masse
La masse est une grandeur physique conservative.

Équation locale de conservation de la masse ♥︎ -8

𝜕𝜇
𝜕𝑡

= −div (𝜇 ⃗𝑣) Avec
• 𝜇 la masse volumique ( kg m−3)
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Conservation du débit massique ♥︎ -9

Hypothèse : Le régime est stationnaire

Le débit massique est le même sur 
chaque section d’un tube de courant.

Avec
• 𝐷𝑚 le débit massique ( kg s−1)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)

1.8. Écoulement incompressible et homogène
Le volume n’est pas nécessairement une grandeur conservative.

Exemple

Si on compresse une seringue contenant un gaz, son volume diminue.

Dans un écoulement incompressible, le volume des particules de fluides ne change pas au cours du temps.

Dans un écoulement homogène, toutes les particules de fluide ont la même masse volumique.

Dans un écoulement incompressible et homogène, la masse volumique 𝜇 est uniforme3 et stationnaire4.

Conservation du volume ♥︎

Hypothèses :
• L'écoulement est incompressible
• L'écoulement est homogène

Le volume se conserve.

Conservation du débit volumique ♥︎ -10

Hypothèses :
• L'écoulement est incompressible
• L'écoulement est homogène

Le débit volumique est le même sur chaque section d’un tube de courant.

2. Actions de contact sur un fluide

2.1. Action normale et tangentielle
Les forces de contact s’exerçant sur la surface d’une particule de fluide sont proportionnelles à sa surface. 
Elles peuvent se décompose en
• une composante orthogonale à la surface (normale) appelée force de pression
• une composante tangentielle à la surface appelée force de viscosité

2.2. Forces de pression

Forces de pression ♥︎

⃗𝛿2𝐹𝑃 = 𝑃 d𝑆
Avec
• 𝛿2𝐹𝑃  la force de pression s’exerçant sur une surface 

élémentaire ( N)
• 𝑃  la pression ( Pa)

3Uniforme signifie qui ne dépend pas de la position : c’est le même partout.
4Stationnaire signifie qui ne dépend pas du temps : c’est le même tout le temps.
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Résultante volumique des forces de pression ♥︎ -11

⃗𝛿3𝐹𝑃 = − 𝑔𝑟𝑎𝑑 𝑃 d𝑉
Avec
• 𝛿3𝐹𝑃  la force de pression s’exerçant sur un volume 

élémentaire ( N)
• 𝑃  la pression ( Pa)

Relation fondamentale de l'hydrostatique ♥︎ -12

Hypothèses :
• Le fluide est au repos.
• Les seules forces sont les forces de pression et le poids.

𝑔𝑟𝑎𝑑 𝑃 = 𝜇 ⃗𝑔

Avec
• 𝑃  la pression ( Pa)
• 𝜇 la masse volumique ( kg m−3)
• 𝑔 l’accélération de la pesanteur ( m s−2)

Application -
13

Déterminer le champ de pression dans l’océan en le supposant homogène, incompressible et au repos.

Application -
14

Déterminer le champ de pression dans l’atmosphère la supposant immobile et isotherme et en assimilant 
l’air à un gaz parfait.

2.3. Forces tangentielles
La force tangentielle est due à la viscosité du fluide.

Schéma : Forces de viscosité sur une surface élémentaire

Forces de viscosité

Hypothèses :
• Le fluide est newtonien.
• Le champ de vitesse est ⃗𝑣 = 𝑣(𝑦) ⃗𝑒𝑥.
• La surface sur laquelle s’exerce la force est orientée selon ⃗𝑒𝑦.

𝛿2𝐹𝑣 = 𝜂𝜕𝑣
𝜕𝑦

d𝑆 ⃗𝑒𝑥

Avec
• 𝛿2𝐹𝑣 la force de viscosité s’exerçant sur une surface 

élémentaire ( N)
• 𝜂 la viscosité dynamique ( Pl = Pa s)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Cette formule doit être adaptée en fonction des axes du problème.

Application -
15

Vérifier l’homogénéité de cette relation.
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Viscosité de l'eau ♥︎

Hypothèse : À 20 °C

𝜂eau = 1 ⋅ 10−3 Pl
Avec
• 𝜂 la viscosité dynamique ( Pl = Pa s)

Résultante volumique des forces de viscosité ♥︎ -16

Hypothèse : Le fluide est newtonien.

𝛿3𝐹𝑣 = 𝜂 ⃗𝛥 ⃗𝑣 d𝑉

Avec
• 𝛿3𝐹𝑣 la résultante de viscosité s’exerçant sur un volume 

élémentaire ( N)
• 𝜂 la viscosité dynamique ( Pl = Pa s)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Comme la force ne peut pas diverger, le champ de vitesse est dérivable donc continu.

En particulier, la vitesse d’un fluide au voisinage immédiat d’un solide est la vitesse du solide. Cette 
condition est appelée condition d’adhérence fluide-solide.

Application -
17

Appliquer la loi de la quantité de mouvement sur une particule de fluide soumise aux forces de pression, 
de viscosité (fluide newtonien) et au poids. Cette équation (simplifiée par d𝑉 ) est appelée équation de 
Navier-Stockes.

Application -
18

Écoulement de Couette-plan : un fluide est en écoulement stationnaire entre deux plaques parallèles, 
l’une immobile (en 𝑧 = 0) et l’autre animée d’une vitesse ⃗𝑉 = 𝑉 ⃗𝑒𝑥 (en 𝑧 = 𝑎). On néglige les effets 
de la gravité et on suppose la pression uniforme. Déterminer le champ de vitesse dans le fluide. On 
supposera que la vitesse ne dépend que de 𝑧 et qu’elle est selon 𝑥 : ⃗𝑣 = 𝑣(𝑧) ⃗𝑒𝑥.

3. Écoulement interne incompressible et homogène dans une conduite cylin­
drique

On s’intéresse à un écoulement à l’intérieur d’une conduite cylindrique.

Exemple

Eau dans le réseau d’eau potable.

3.1. Vitesse débitante
La vitesse débitante est la vitesse qu’aurait le fluide si le champ de vitesse était uniforme tout en conservant 
le même débit volumique.

Vitesse débitante ♥︎

𝑈 = 𝐷𝑉
𝑆

Avec
• 𝑈  la vitesse débitante ( m s−1)
• 𝐷𝑉  le débit volumique ( m3 s−1)
• 𝑆 la section de la conduite ( m2)

La vitesse débitante peut être vue comme la moyenne de la vitesse sur une section de la conduite :

𝑈 =
∬

𝑆
⃗𝑣 ⋅ d𝑆

𝑆
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3.2. Régimes d’écoulement

https://youtu.be/eD7LdS6bfOQ

Reynolds a mis en évidence expérimentalement deux régimes d’écoulement.

Schéma : Expérience de Reynolds

En fonction du débit, on peut observer

le régiment laminaire dans lequel les lignes de courant sont stationnaires, pour des vitesses débitantes 
faibles

le régime turbulent dans lequel les lignes de courant se déforment, pour des vitesses débitantes 
importantes.

Les deux régimes d’écoulement diffèrent par le mode de transport de quantité de mouvement prépondérant.

3.3. Transport de quantité de mouvement par diffusion
Dans le régime laminaire, la quantité de mouvement est essentiellement transportée par diffusion.

Vecteur densité de courant de quantité de mouvement diffusé -
19

Hypothèse : Le fluide est newtonien.

⃗𝑗𝑝,𝑑𝑖𝑓𝑓 = −𝜈 𝑔𝑟𝑎𝑑 (𝜇𝑣)

Avec
• ⃗𝑗𝑝,𝑑𝑖𝑓𝑓 le vecteur densité de courant de quantité de 

mouvement diffusée ( kg m s−1 m−2 s−1)
• 𝜈 = 𝜂

𝜇  la viscosité cinématique ( m2 s−1)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)

Temps caractéristique de diffusion de quantité de mouvement ♥︎ -20

𝜏dif ∼ 𝐿2

𝜈

Avec
• 𝜏diff la durée caractéristique associée à la diffusion ( s)
• 𝐿 une longueur caractéristique du problème ( m)
• 𝜈 = 𝜂

𝜇  la viscosité cinématique ( m2 s−1)

3.4. Transport de quantité de mouvement par convection
Dans le régime turbulent, la quantité de mouvement est essentiellement transportée par convection.

Vecteur densité de courant de quantité de mouvement -
21

⃗𝑗𝑝,𝑐𝑜𝑛𝑣 = 𝜇𝑣 ⃗𝑣
Avec
• ⃗𝑗𝑝,𝑐𝑜𝑛𝑣 le vecteur densité de courant de quantité de 

mouvement convectée ( kg m s−2 m−2 s−1)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)

8
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Temps caractéristique de convection de quantité de mouvement ♥︎ -22

𝜏conv ∼ 𝐿
𝒱︁

Avec
• 𝜏conv la durée caractéristique associée à la convection 

( s)
• 𝐿 une longueur caractéristique du problème ( m)
• 𝒱︁ un ordre de grandeur de la vitesse de l’écoulement 

( m s−1)

3.5. Nombre de Reynolds
Le nombre de Reynolds est une grandeur adimensionnée qui sert à comparer l’importance relative du 
transport de quantité de mouvement par convection et par diffusion.

Nombre de Reynolds ♥︎

Hypothèse : le fluide est newtonien

𝑅𝑒 = 𝒱︁𝐿
𝜈

Avec
• 𝑅𝑒 le nombre de Reynolds (sans unité)
• 𝐿 une longueur caractéristique du problème ( m)
• 𝒱︁ un ordre de grandeur de la vitesse de l’écoulement 

( m s−1)
• 𝜈 = 𝜂

𝜇  la viscosité cinématique ( m2 s−1)

Dans le cas d’un écoulement interne, 𝐿 désigne le diamètre de la conduite.

Dans le cadre d’un écoulement interne à une conduite cylindrique, la longueur caractéristique 𝑑 est le 
diamètre de la conduite et l’ordre de grandeur de la vitesse est la vitesse débitante.

Application -
23

De l’eau à 20 °C circule dans une conduite de diamètre 5 cm et de longueur 30 m à la vitesse débitante 
de 0.1 m s−1. Calculer le nombre de Reynolds.

Diffusion vs convection -
24

Hypothèse : le fluide est newtonien

𝑅𝑒 ∼ 𝜏diff
𝜏conv

∼
‖ ⃗𝑗𝑝,𝑐𝑜𝑛𝑣‖
‖ ⃗𝑗𝑝,𝑐𝑜𝑛𝑣‖

Avec
• 𝑅𝑒 le nombre de Reynolds (sans unité)
• 𝜏diff la durée caractéristique associée à la diffusion ( s)
• 𝜏conv la durée caractéristique associée à la convection 

( s)

Expérimentalement, on peut établir le seuil de passage d’un régime laminaire à un régime turbulent.

Seuil de turbulence ♥︎

Hypothèses :
• Le fluide est newtonien
• L'écoulement est interne à une conduite
• Si 𝑅𝑒 < 2000 l’écoulement est lami

naire
• Si 𝑅𝑒 > 2000 l’écoulement est turbu

lent

Avec
• 𝑅𝑒 le nombre de Reynolds (sans unité)

Application -
25

De l’eau à 20 °C circule dans une conduite de diamètre 5 cm et de longueur 30 m à la vitesse débitante 
de 0.1 m s−1. L’écoulement est-il laminaire ou turbulent ?
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3.6. Chute de pression dans une conduite horizontale à faible nombre de Reynolds
Dans un écoulement interne laminaire, la chute de pression entre les deux extrémités d’une conduite 
cylindrique est donnée par la loi de Hagen–Poiseuille.

Loi de Hagen–Poiseuille ♥︎ -26

Hypothèses :
• Le fluide est newtonien.
• La conduite est horizontale.
• L'effet de la gravité est négligé.
• L'écoulement est laminaire.
• Le régime est stationnaire.
• Le champ de pression ne dépend que de 𝑥.
• Les effets de bord sont négligés.

𝐷𝑉 = 𝜋𝑅4

8𝜂𝑙
Δ𝑃

Avec
• 𝐷𝑉  le débit volumique ( m3 s−1)
• 𝑅 le rayon de la conduite ( m)
• 𝜂 la viscosité dynamique ( Pl = Pa s)
• 𝑙 la longueur de la conduite ( m)
• Δ𝑃  la différence de pression entre les extrémités de la 

conduite ( Pa)

Par analogie avec l’électrocinétique, on peut définir la résistance hydraulique.

Résistance hydraulique ♥︎ -27

Hypothèses :
• Le fluide est newtonien.
• La conduite est horizontale.
• L'effet de la gravité est négligé.
• L'écoulement est laminaire.

Δ𝑃 = 𝑅𝐻𝐷𝑉

avec

𝑅𝐻 = 8𝜂𝑙
𝜋𝑅4

Avec
• Δ𝑃  la différence de pression entre les extrémités de la 

conduite ( Pa)
• 𝑅𝐻 la résistance hydraulique ( Pa s m−3)
• 𝐷𝑉  le débit volumique ( m3 s−1)
• 𝜂 la viscosité dynamique ( Pl = Pa s)
• 𝑙 la longueur de la conduite ( m)
• 𝑅 le rayon de la conduite ( m)

Application -
28

De l’eau à 20 °C circule dans une conduite de diamètre 5 cm et de longueur 30 m à la vitesse débitante 
de 0.01 m s−1. Quelle est la chute de pression entre les deux extrémités de la conduite ?

3.7. Chute de pression pour un écoulement quelconque
Lorsque l’écoulement n’est pas laminaire, la loi de Hagen-Poiseuille n’est plus vraie. Il est alors nécessaire 
de s’en remettre aux données expérimentales qui sont résumées sur un diagramme appelé diagramme de 
Moody.
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Application -
29

De l’eau à 20 °C circule dans une conduite en fonte de diamètre 1.5 cm et de longueur 3 m à la vitesse 
débitante de 2 m s−1. Quelle est la chute de pression entre les deux extrémités de la conduite ?

4. Écoulement externe incompressible et homogène autour d’un obstacle

4.1. Force et coefficient de trainée
Lorsqu’un objet est en mouvement rectiligne uniforme dans un fluide, il subit des forces de pression et de 
viscosité. La résultante de ces forces, exceptée la poussée d’Archimède, dans la direction du mouvement est 
appelée trainée.

Le maitre-couple (ou surface apparente) est la surface projetée dans une certaine direction.

Schéma : Maître couple
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Application -
30

Calculer le maitre couple dans la direction du mouvement pour la voiture ci-dessous. On pourra 
approximer la voiture à un parallélépipède rectangle pour faire les calculs.

Force de traînée ♥︎ -31

Hypothèses :
• Le fluide est newtonien.
• L'écoulement est stationnaire.
• L'objet est en mouvement rectiligne uniforme.

⃗𝐹𝑥 = −1
2
𝜇𝑣2𝑆𝑥𝐶𝑥𝑢⃗

Avec
• 𝐹𝑥 la force de traînée ( N)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)
• 𝑆𝑥 le maître-couple selon 𝑥 ( m2)
• 𝐶𝑥 le coefficient de traînée (sans unité)

Le coefficient de trainée dépend de la forme de l’objet et du nombre de Reynolds.

4.2. Cas d’une sphère

12



Le coefficient de trainée de la sphère est tracé en fonction du nombre de Reynolds dans la courbe en annexe. 
On peut y voir plusieurs parties.

4.2.1. Faible Reynolds
Pour 𝑅𝑒 < 1, le graphe s’approche d’une droite (en échelle logarithmique) d’équation 𝐶𝑥 = 24

𝑅𝑒
.

Force de trainée linéaire ♥︎ -32

Hypothèses :
• Le fluide est newtonien.
• 𝑅𝑒 < 1

⃗𝐹𝑥 = −𝛼 ⃗𝑣

Avec
• 𝐹𝑥 la force de traînée ( N)
• 𝛼 le coefficient de frottement ( N s m−1)
• 𝑣 le champ de vitesse du fluide ( m s−1)

4.2.2. Haut Reynolds
Pour 𝑅𝑒 ∈ [2 000, 200 000], 𝐶𝑥 est constant.

Force de trainée quadratique ♥︎ -33

Hypothèses :
• Le fluide est newtonien
• 𝑅𝑒 ∈ [2 000, 200 000]

⃗𝐹𝑥 = −𝛽𝑣2𝑢⃗

Avec
• 𝐹𝑥 la force de traînée ( N)
• 𝛽 le coefficient de frottement ( N s2 m−2)
• 𝑣 le champ de vitesse du fluide ( m s−1)

4.3. Forces de trainée et de portance sur une aile d’avion
Sur certains objets, la force de trainée s’accompagne d’une force de portance.

Force de portance ♥︎

⃗𝐹𝑧 = 1
2
𝜇𝑣2𝑆𝑧𝐶𝑧𝑢⃗

Avec
• 𝐹𝑧 la force de portance ( N)
• 𝜇 la masse volumique ( kg m−3)
• 𝑣 le champ de vitesse du fluide ( m s−1)
• 𝑆𝑧 le maitre couple selon 𝑧 ( m2)
• 𝐶𝑧 le coefficient de portance (sans unité)

Exemple

Aile d’avion, voile de bateau.

La force de trainée est colinéaire à la vitesse de l’objet. La force de portance est orthogonale à la vitesse 
de l’objet.

Schéma : Traînée, portance et angle d'incidence
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La trainée et la portance dépendent de l’angle d’incidence. Les courbes ci-dessous présentent un exemple 
de dépendance pour une aile d’avion.

4.4. Couche limite
Dans un écoulement à haut nombre de Reynolds, où le transport de quantité de mouvement se fait 
essentiellement par convection, la viscosité du fluide a une influence sur la force subie par un objet. Pour 
expliquer cet apparent paradoxe, on introduit la couche limite.

Dans un écoulement à haut nombre de Reynolds, il existe des zones où le transport de quantité de 
mouvement se fait essentiellement par diffusion. Ces zones sont appelées couches limites. Ces zones sont de 
faible épaisseur et situées à proximité immédiate des objets.

Schéma : Couche limite

14



Méthodes

1. Appliquer le théorème de la résultante cinétique à une particule de fluide
1. Faire le bilan des forces

• Forces de pression (résultante − 𝑔𝑟𝑎𝑑 𝑃 d𝑉 )
• Forces de viscosité (résultante 𝜂Δ ⃗𝑣 pour un fluide newtonien)
• D’autres forces éventuelles (poids, …)

2. Écrire le TRC à la particule de fluide (attention, l’accélération comporte 2 termes : le terme local et le 
terme convectif)

2. Lire un diagramme de Moody
1. (seulement si 𝑅𝑒 > 2000) Déterminer sur quelles courbes on va se placer grâce à la rugosité.
2. Passer des grandeurs de l’énoncé aux grandeurs adimensionnées.
3. Lire sur la courbe.
4. Passer des grandeurs adimensionnées lues sur la courbes aux grandeurs demandées.
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Exercices

1. Troposphère
La troposphère est la partie inférieure de l’atmosphère, située sous 11 km d’altitude. On note (𝑂𝑧) l’axe 
vertical ascendant, dont l’origine est au niveau de la mer.

On suppose dans un premier temps que la température est uniforme dans la troposphère.

1/ Déterminer l’expression de la pression 𝑃  en fonction de l’altitude 𝑧, en fonction de la température 𝑇 , 
de la masse molaire de l’air 𝑀air, de la constante des gaz parfaits 𝑅 et de l’accélération de la pesanteur 𝑔. 
On note 𝑃0 la pression au niveau de la mer.

2/ Montrer que 70 % de la masse totale de l’air se situe en dessous de 10 km dans ce modèle.

On renonce à l’hypothèse isotherme pour passer à une atmosphère adiabatique.

3/ Les capacités thermiques molaires de l’air sont 𝐶𝑉 = 5
2𝑅 et 𝐶𝑃 = 7

2𝑅. Exprimer la valeur du coefficient 𝛾.

4/ Montrer que le produit 𝑇 𝑥𝑃 𝑦 est constant pour une transformation réversible et adiabatique d’un gaz 
parfait. Exprimer 𝑥 et 𝑦 en fonction de 𝛾.

5/ En déduire la relation reliant d𝑃
𝑃  et d𝑇

𝑇 .

6/ Établir l’expression du gradient de température adiabatique d𝑇
d𝑧  en fonction de 𝛾, 𝑀 , 𝑔 et 𝑅.

7/ Quelle température fait-il en haut de la troposphère dans ce modèle adiabatique ?

2. Lubrification
Le but de cet exercice est de comprendre l’intérêt de la lubrification. On considère un mobile parallélépi
pédique de masse 𝑀 = 30 kg en translation sur un support horizontal.

⃗𝑒𝑥

⃗𝑒𝑦

⃗𝑣𝑚

Fig. 5. – Mobile en frottement solide avec son support.

Dans un premier temps, on étudie le contact sec entre le pavé et la surface. La force de frottement est de 
type frottement solide. Il obéit à la loi de Coulomb : 𝑅𝑇 = 𝑓𝑅𝑁  avec un coefficient 𝑓 = 0.20. En 𝑥 = 0, 
𝑣 = 𝑣0 = 10 km h−1.

1/ Calculer la valeur numérique de la réaction tangentielle.

2/ Calculer la distance d’arrêt du mobile et faire l’application numérique.

⃗𝑒𝑥

⃗𝑒𝑦

⃗𝑣𝑚

Fig. 6. – Mobile sur une couche de fluide.

On introduit maintenant une couche d’huile d’épaisseur 𝑒 = 1.0 mm entre la mobile et la surface. On suppose 
que le régime est permanent (un opérateur maintient la vitesse du palet constante) et que la vitesse du 
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fluide s’écrit ⃗𝑣 = 𝑣(𝑥, 𝑦) ⃗𝑒𝑥. On néglige les effets de bords. La surface du mobile en contact avec l’huile est 
𝑆 = 400 cm2. Le mobile a une vitesse 𝑣𝑚 = 𝑣0 = 10 km h−1.

La densité de l’huile est 0.9 et sa viscosité cinématique est 60 ⋅ 10−6 m2 s−1.

3/ Calculer la viscosité dynamique de l’huile.

4/ Montrer que 𝑣(𝑥, 𝑦) est indépendant de 𝑥.

5/ On admet que la vitesse s’écrit 𝑣(𝑦) = 𝑎𝑦 + 𝑏. Déterminer 𝑎 et 𝑏 en exploitant la description du problème.

6/ Donner l’expression de la force surfacique de cisaillement au sein de l’eau.

7/ Exprimer la force de frottement à laquelle est soumis la pavé.

8/ On admet qu’en l’absence d’action de l’opérateur pour maintenir la vitesse constante, l’expression de la 
vitesse établie précédemment reste valable, mais avec 𝑎 fonction du temps. Que devient la distance d’arrêt 
du palet ?

3. Conduite plate
On s’intéresse à une conduite plate d’épaisseur 𝑒, de largeur 𝑙 ≫ 𝑒 et de longueur 𝐿 dans laquelle circule 
un fluide incompressible et homogène de viscosité dynamique 𝜂 et de masse volumique 𝜇.

Le champ de vitesse est noté ⃗𝑣 = 𝑣 ⃗𝑒𝑦

La conduite est délimitée par les plans d’équation 𝑥 = 𝑙
2 , 𝑥 = − 𝑙

2 , 𝑧 = 𝑒
2  et 𝑧 = −𝑒

2 .

Les effets de la gravité sont négligés et on suppose que le gradient de pression est uniforme et selon ⃗𝑒𝑦

⃗𝑣

𝐿

𝑒

𝑙

𝑥

𝑦

𝑧

1/ Déterminer l’équation aux dérivées partielles vérifiée par le champ de vitesse dans la conduite.

2/ Quelles sont les conditions aux limites vérifiées par le champ de vitesse ?

3/ On suppose l’écoulement laminaire et en régime stationnaire. Les effets de bord sont négligés. Justifier 
que ⃗𝑣 = 𝑣(𝑧) ⃗𝑒𝑦

4/ Établir le profil de vitesse dans la conduite.

5/ Exprimer le débit volumique dans la conduite en fonction de 𝑙, 𝑒, 𝜂 et 𝜕𝑃
𝜕𝑦 .

6/ Calculer la résistance hydraulique de cette conduite plate pour 𝑒 = 1 mm, 𝐿 = 2 m et 𝑙 = 2 cm et dans 
laquelle circule de l’eau à 20 °C.

4. Distribution d'eau potable
Un château d’eau de hauteur ℎ = 25 m, alimente un village en eau potable. On suppose l’écoulement 
incompressible et homogène.
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ℎ

𝐿

1/ Quelle pression 𝑃𝑒 qui peut être attendue au pied du château d’eau, en admettant que le débit de l’eau 
dans la canalisation soit suffisamment faible pour ne pas impacter la pression ?

2/ Soit une conduite de longueur 𝐿 = 100 m et de section 𝑆 = 1 cm2 partant du pied de ce château 
d’eau. L’autre extrémité est à l’air libre. Quel débit peut-on attendre, en supposant a priori l’écoulement 
laminaire ? Calculer la vitesse débitante 𝑈 .

3/ Calculer le nombre de Reynolds pour cet écoulement. La modélisation précédente est-elle correcte ?

4/ En utilisant le diagramme de Moody, dire si la vitesse débitante sera plus ou moins importante que celle 
calculée plus haut.

5. 💬 J’explique à ma tante : Analogie hydraulique
Le but de cet exercice est de vous faire expliquer un concept/phénomène avec des mots simples et courants 
(pas de vocabulaire technique ou scientifique) à une personne de votre entourage. Tachez de faire simple 
et court, utilisez des analogies avec des choses connues. Vous pouvez vous inspirer de Ma thèse en 180 
secondes. Profitez-en pour prendre des nouvelles !

On introduit souvent l’électricité en continu en faisant une analogie avec l’hydraulique.

Expliquer, en procédant par analogie avec l’hydraulique, les bases de l’électricité: qu’est-ce 
qu’une tension, un courant, une résistance.

6. 🤔 Poteau d'incendie ★★
Cet exercice est un problème ouvert. Il nécessite de prendre des initiatives et de faire des choix dans la 
modélisation. Des approximations et des estimations sont souvent nécessaires pour arriver à une solution.

Les poteaux d’incendie doivent pouvoir délivrer un débit de 30 m3 h−1 minimum sous une pression dyna
mique de 1 bar minimum.
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Un chateau d’eau de 20 m de haut alimente un village en eau par une conduite en fonte de diamètre 
intérieur 200 mm et de longueur 3 km puis par une conduite en fonte de diamètre intérieur 150 mm et de 
longueur 2 km.

On pourra utiliser le diagramme de Moody du cours.

Les poteaux d’incendie sont-ils aux normes ou est-il nécessaire d’installer des bassins de 
stockage supplémentaires dans le village ?

7. Chute d'une bille dans un fluide très visqueux
On s’intéresse à une bille d’acier sphérique de rayon 𝑅, de masse 𝑚, de masse volumique 𝜌acier =
7 850 kg m−3, de vitesse ⃗𝑣 = −𝑣 ⃗𝑒𝑧 lâchée sans vitesse initiale dans une éprouvette remplie de glycérine (de 
masse volumique 𝜌glycérine = 1 260 kg m−3 et de viscosité de l’ordre de 𝜂 ∼ 100 Pa s).

Le champ de pesanteur ⃗𝑔 est uniforme. On pose 𝑔′ = (1 − 𝜌glycérine
𝜌acier

). L’axe (𝑂𝑧) est vertical ascendant.

L’éprouvette est de diamètre très supérieur à celui de la bille. La force de frottements visqueux exercée par 
le fluide sur la bille est ⃗𝐹 = −6𝜋𝜂𝑅 ⃗𝑣.

1/ Déterminer l’équation différentielle vérifiée par la vitesse 𝑣 de la bille.

2/ Calculer la durée caractéristique 𝜏  associée à l’équation différentielle pour 𝑅 = 1.5 mm

3/ Exprimer la vitesse limite en fonction de 𝑅, 𝑔′, 𝜌acier et 𝜂.

4/ On mesure 𝑣1 s, la norme de la vitesse une seconde après avoir lâché la bille pour différentes tailles de 
bille. La courbe ci-dessous montre l’évolution de 𝑣1 s, en fonction de 𝑅2. En déduire la valeur de la viscosité 
𝜂 de la glycérine.

0 1 2
𝑅2 ( mm2)

0

0.01

0.02

0.03

𝑣 1
s 
(m

s−
1 )

5/ Calculer le nombre de Reynolds pour la plus grosse sphère. Est-il légitime de considérer des frottements 
fluides linéaires ?

8. 🖥️ Chute d'une bille dans un fluide peu visqueux ★
On lâche sans vitesse initiale une bille sphérique de rayon 𝑅, de masse 𝑚, dans un liquide visqueux, de 
masse volumique 𝜇 très faible devant celle de la bille, et de viscosité cinématique 𝜈.

On suppose la pesanteur uniforme, et on note ⃗𝑣(𝑡) = −𝑣(𝑡) ⃗𝑒𝑧 la norme de la vitesse de la bille.
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On suppose que le nombre de Reynolds est compris entre 2 ⋅ 103 et 2 ⋅ 105. Dans ce cas, le coefficient de 
trainée d’une sphère est 𝐶𝑥 = 0.47.

1/ Exprimer la force de frottement fluide sur la bille.

2/ Établir l’équation différentielle vérifiée par 𝑣(𝑡) ?

3/ Établir l’expression de la vitesse limite 𝑣lim atteinte par la bille.

4/ On cherche à résoudre numériquement l’équation différentielle pour obtenir 𝑣(𝑡).

Compléter le code Python suivant pour simuler la chute de la bille.

from math import pi

from scipy.integrate import solve_ivp

R = 0.01  # rayon de la bille en m

m = 0.1   # masse de la bille en kg

mu = 1    # masse volumique du fluide en kg/m^3

Cx = 0.47 # coefficient de traînée

g = 9.81  # accélération due à la pesanteur en m/s^2

def dvdt(t, v): # renvoie la dérivée de la vitesse

    ...

v0 = 0  # vitesse initiale en m/s

sol = solve_ivp(dvdt, (0,10), [v0])

t = sol.t

v = sol.y[0]

5/ Tracer la vitesse de la bille en fonction du temps.

6/ Expliquer pourquoi la modélisation proposée pose problème aux premiers instants du mouvement.

7/ Des relevés expérimentaux du coefficient de trainée en fonction du nombre de Reynolds sont donnés 
dans un fichier téléchargeable à l’adresse suivante

https://nuage03.apps.education.fr/index.php/s/
APPGg6586cnHELy

Compléter le code Python suivant pour calculer la force de trainée à partir de ces données expérimentales.

import numpy as np

data = np.loadtxt('Cx-Re.csv', delimiter=',', skiprows=1)

Re_exp = ... # première colonne de data

Cx_exp = ... # deuxième colonne de data

eta = 1.85e-5  # viscosité dynamique de l'ai en Pa.s

def Fx(v):

    Re = ...

    Cx = np.interp(Re, Re_exp, Cx_exp) # interpolation du coefficient de traînée à partir des données 

expérimentales

    return ...

8/ Modifier le code de la question 4 pour prendre en compte cette nouvelle expression de la force de trainée, 
et tracer la vitesse de la bille en fonction du temps.
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9. 💬 J’explique à mon grand-père : Voilier au près
Le but de cet exercice est de vous faire expliquer un concept/phénomène avec des mots simples et courants 
(pas de vocabulaire technique ou scientifique) à une personne de votre entourage. Tachez de faire simple 
et court, utilisez des analogies avec des choses connues. Vous pouvez vous inspirer de Ma thèse en 180 
secondes. Profitez-en pour prendre des nouvelles !

Les voiliers sont capables de remonter au vent. Expliquer comment c’est possible.

10. 🖥️ Tir cadré ? ★
On étudie un tir au football. La vitesse initiale du ballon est de 20 m s−1 selon l’axe 𝑥 (horizontal) et de 
12 m s−1 selon l’axe 𝑧 (vertical). Le ballon est sur le sol juste avant le tir.

Dans un premier temps, on ne prend en compte que la gravité.

1/ Établie l’équation différentielle vérifiée par la vitesse ⃗𝑣 du ballon. Exprimer la dérivée de la vitesse.

On résout numériquement l’équation différentielle en utilisant la fonction solve_ivp de la bibliothèque 
scipy.integrate.

2/ Compléter le code suivant.

from scipy.integrate import solve_ivp, trapezoid

import numpy as np

g = 9.81 # m/s^2

rho = 1.2 # kg/m^3

v0 = np.array([20, 0, 12]) # m/s

def dv_dt(t, v):

    a = ... # accélération

    return a

sol = solve_ivp(dv_dt, [0, 2], v0, max_step=0.01)

t = sol.t

vx = sol.y[0, :]

vy = sol.y[1, :]

vz = sol.y[2, :]

Il est maintenant nécessaire de calculer la position du ballon en intégrant la vitesse en utilisant la méthode 
des rectangles.
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3/ Compléter le code suivant. Attention, les temps calculés par la fonction solve_ivp ne sont pas forcément 
régulièrement espacés.

x = [0]

y = [0]

z = [0]

for i in range(1, len(sol.t)):

    x.append(...)

    y.append(...)

    z.append(...)

Pour vérifier si le tir est cadré, on trace la trajectoire du ballon grâce au code suivant.

fig = plt.figure()

ax = fig.add_subplot(111, projection="3d")

ax.plot(x, y, z)

# Tracé des cages

x_cages = 14.5

y_cages = 0.3

l_cages = 7.32

h_cages = 2.44

ax.plot(

    [x_cages]*4,

    [y_cages, y_cages, y_cages + l_cages, y_cages + l_cages],

    [0, h_cages, h_cages, 0],

    color="orange")

# Mise en forme

ax.set_xlabel("x (m)")

ax.set_ylabel("y (m)")

ax.set_zlabel("z (m)")

ax.set_title("Trajectoire 3D")

ax.set_zlim(0, max(z)*1.1)

plt.tight_layout()

plt.show()

4/ Le tir est-il cadré ?

On prend maintenant en compte les frottements avec l’air. On donne les valeurs numériques suivantes : 𝜌 =
1.2 kg m−3, 𝐶𝑥 = 0.47, 𝑅 = 0.11 m et 𝑚 = 145 g

5/ Modifier la fonction dv_dt pour inclure la force de traînée.

On pourra utiliser la fonction np.linalg.norm(v) pour calculer la norme du vecteur vitesse 𝑣.

Le tir est-il maintenant cadré ?

Le footballeur a mis de l’effet dans la balle en lui imprimant une rotation de Ω = 100 min−1 autour de 
l’axe (𝑂𝑧). Cette rotation engendre une force de portance appelée force de Magnus et s’exprimant comme 
1
2𝐶𝜌𝑅3 ⃗𝛺 ∧ ⃗𝑣 avec 𝐶 ≈ 1.

6/ Modifier la fonction dv_dt pour inclure la force de Magnus.

Le tir est-il maintenant cadré ?
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