Applications Linéaires

Keven Commault

Lycée Brizeux

25 avril 2021

Deux E.V.

 $u: E \rightarrow F$ est une application linéaire de E dans F si u respecte

les combinaisons linéaires, autrement dit si :

a) L'application nulle n : $\left\{ egin{array}{ll} E &
ightarrow F \\ ec{x} & \mapsto & ec{0}_F \end{array} \right.$

- a) L'application nulle $n: \left\{ egin{array}{ll} E &
 ightarrow F \\ ec{x} & \mapsto & ec{0}_F \end{array} \right.$
- b) La dérivation des polynômes : $\left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & P' \end{array} \right..$

- a) L'application nulle $n: \left\{ egin{array}{ll} E &
 ightarrow F \\ ec{x} & \mapsto & ec{0}_F \end{array} \right.$
- b) La dérivation des polynômes : $\left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & P' \end{array} \right.$

c)
$$\left\{ \begin{array}{ccc} \mathcal{C}^0([0,1]) & \to & \mathbb{R} \\ f & \mapsto & \int_{[0;1]} f \end{array} \right.$$

- a) L'application nulle n: $\begin{cases} E \rightarrow F \\ \vec{x} \mapsto \vec{0}_F \end{cases}$
- b) La dérivation des polynômes : $\left\{ egin{array}{ll} \mathbb{K}[X] &
 ightarrow & \mathbb{K}[X] \\ P &
 ightarrow & P' \end{array}
 ight.$

c)
$$\left\{ \begin{array}{ccc} \mathcal{C}^0([0,1]) & \to & \mathbb{R} \\ f & \mapsto & \int_{[0;1]} f \end{array} \right.$$

d)
$$\phi: \left\{ \begin{array}{c} \mathbb{K}^2 \to \mathbb{K}^3 \\ (x,y) \mapsto (-x+2y,0,y) \end{array} \right.$$

dans plan d'équation
$$y=0$$
.
(àd $\phi(x,y)=(?,0,?)$

Soit
$$u \in \mathcal{L}(E, F)$$

Soit
$$u \in \mathcal{L}(E, F)$$
.
i. $u(\vec{0}_E) = 0$

et ii.
$$\forall \vec{x} \in E, \ u(-\vec{x}) = - u(\vec{x})$$

Démonstration

$$u(\vec{0}_E) =$$

$$\forall \vec{x} \in E, \ u(-\vec{x}) =$$

Vocabulaire

Soit $u \in \mathcal{L}(E, F)$.

- Lorsque F = E, on dit que u est un endo -morphism
- Lorsque *u* est bijective, on dit que *u* est un ****
- Un endomorphisme qui est un isomorphisme est un
- L'ensemble des automorphismes de E est appelé groupe linéaire de E et noté GL(E).

Remarque:

a) $\Phi: \left\{ egin{array}{ll} \mathbb{K}_2[X] &
ightarrow & \mathbb{K}_2[X] \\ P & \mapsto & P' \end{array}
ight.$ est un endomorphisme de $\mathbb{K}_2[X]$ mais n'en n'est pas un automorphisme car :

- a) $\Phi: \left\{ egin{array}{ll} \mathbb{K}_2[X] & \to & \mathbb{K}_2[X] \\ P & \mapsto & P' \end{array} \right.$ est un endomorphisme de $\mathbb{K}_2[X]$ mais n'en n'est pas un automorphisme car :
- b) L'identité $\operatorname{Id}_E: \left\{ \begin{array}{ccc} E & \to & E \\ \vec{x} & \mapsto & \vec{x} \end{array} \right.$ est un automorphisme de E.

- a) $\Phi: \left\{ egin{array}{ll} \mathbb{K}_2[X] & \to & \mathbb{K}_2[X] \\ P & \mapsto & P' \end{array} \right.$ est un endomorphisme de $\mathbb{K}_2[X]$ mais n'en n'est pas un automorphisme car :
- b) L'identité $\operatorname{Id}_E: \left\{ \begin{array}{ccc} E & \to & E \\ \vec{x} & \mapsto & \vec{x} \end{array} \right.$ est un automorphisme de E.

Exercice:
$$u: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+y,x-y) \end{array} \right. \in GL(\mathbb{R}^2).$$

Composition d'applications linéaires :

Combinaison linéaire d'applications linéaires :

houvelles applications lineaires

Si $u \in \mathcal{L}(E, F)$ est bijectif alors $u^{-1} \in \mathcal{L}(F, E)$.

De plus,
$$\underline{u \circ u^{-1}} = \mathbf{I}$$
Démonstration

et
$$u^{-1} \circ u = \mathcal{L}_{\mathbf{E}}$$

F The E The P

diagram me: wil

Soit $u \in \mathcal{L}(E,F)$. Noyan de u, hu $u = \{\vec{x} \in [u, h]_{=0}\}$

i. L'image directe d'un sous-espace vectoriel de E est un sous-espace vectoriel de F:

ii. L'**image réciproque** d'un sous-espace vectoriel de F est un sous-espace vectoriel de F:

Démonstration

while: plan de

en voi at les sous-espaces en des sous-espaces A sous les deux seus Brizeux

Quimper

Définition

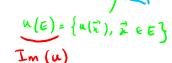
Soit $u \in \mathcal{L}(E, F)$.

- Le <u>noyau</u> de u est $\operatorname{Ker}(u) = \{\vec{x} \in E \mid u(\vec{x}) = \vec{0}_F\}.$
- L'image de u est $Im(u) = \{u(\vec{x}), \vec{x} \in E\}$.

Proposition

Ker(u) est un sous-espace vectoriel de

Im(u) est un sous-espace vectoriel de



Déterminer le noyau et l'image de $\Phi: \left\{ egin{array}{ll} \mathbb{K}_2[X] & \to & \mathbb{K}_2[X] \\ P & \mapsto & P' \end{array} \right.$

À quoi cela sert-il?

À quoi cela sert-il? à créer plein de SEV!

À quoi cela sert-il? à créer plein de SEV!

Exemple:

$$\Gamma = \{y \in \mathcal{C}^2(\mathbb{R})/y'' + 2y' + y = 0\}$$
 est un SEV de $\mathbb{R}^\mathbb{R}$ car

u est injective ssi : $Ker(u) = \{\vec{0}_E\}$; u est surjective ssi $\overline{Im(u) = F}$. Let be definition de la imjectivité!

> in myssons que u soit unjective, mg hu(u)=
$$\{\vec{0}_E\}$$

Soit $\vec{n} \in \text{ker}(u)$ (hu(u) contract toujours $\vec{0}_E$)
 $u(\vec{n}) = \vec{0}_E$ $\vec{n} = \vec{0}_E$ par injectivité de u.
 $u(\vec{0}_E) = \vec{0}_F$ Findement hu $u = \vec{1} \vec{0}_E$

E suposus her(u)= 0 mg n et mj.

Sol n, y ∈ E tq u(n)= u(n) = u(n) - u(y)= 0 → compensation of the suposus of

- u est injective ssi : $Ker(u) = {\vec{0}_E}$;
- u est surjective ssi : Im(u) = F.

Démonstration

Le second point est évident car

Supposons que u soit injective, alors

Réciproquement, si
$$Ker(u) = {\vec{0}_E}$$

Définition

Soit $\lambda \in \mathbb{K}$.

L'homothétie de rapport λ est $h_{\lambda}: \left\{ \begin{array}{ccc} E & \rightarrow & E \\ \vec{x} & \mapsto & \lambda \vec{x}. \end{array} \right.$

Remarque : si $\lambda \in \{0, 1\}$

- Endomorphismes remarquables d'un espace vectoriel
 - └ Homothéties

Les homothéties sont les seuls endomorphismes tels que $(\vec{x}, u(\vec{x}))$ est liée pour tout $\vec{x} \in E$.

Endomorphismes remarquables d'un espace vectoriel

└ Homothéties

Proposition

Les homothéties sont les seuls endomorphismes tels que $(\vec{x}, u(\vec{x}))$ est liée pour tout $\vec{x} \in E$.

(sera vu en TD)

Définition

Soit F et G deux SEV tels que $E=F\oplus G$:

$$\forall \vec{x} \in E$$
,

► La projection sur *F* parallèlement à *G* est l'application linéaire :

$$p: \left\{ \begin{array}{ccc} E & \to & E \\ \vec{x} & \mapsto \end{array} \right. .$$

► La symétrie par rapport à F parallèlement à G est l'application linéaire :

$$s: \left\{ \begin{array}{ccc} E & \rightarrow & E \\ \vec{x} & \mapsto \end{array} \right.$$

Applications Linéaires

- -Endomorphismes remarquables d'un espace vectoriel
 - Projecteurs et symétries

E et F qui sont les **éléments caractéristiques**, il faut les préciser tous les deux.

Par exemple dans le plan, si on projette sur une droite vectorielle sans préciser parallèlement à quel supplémentaire.

E et F qui sont les **éléments caractéristiques**, il faut les préciser tous les deux.

Par exemple dans le plan, si on projette sur une droite vectorielle sans préciser parallèlement à quel supplémentaire.

Proposition

 $E = F \oplus G$, soit p_F la projection sur F parallèlement à G. Alors :

- i. la projection sur G parallèlement à F est $p_g =$
- ii. la symétrie par rapport à F parallèlement à G est :

Proposition

- i. u est un projecteur ssi $u \circ u = u$. On a alors $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$ et u est la projection sur $\operatorname{Im}(u)$ parallèlement à $\operatorname{Ker}(u)$.
- ii. u est une symétrie ssi $u \circ u = \operatorname{Id}$. On a alors $E = \operatorname{Ker}(u - \operatorname{Id}) \oplus \operatorname{Ker}(u + \operatorname{Id})$ et u est la symétrie par rapport à $\operatorname{Ker}(u - \operatorname{Id})$ et parallèlement à $\operatorname{Ker}(u + \operatorname{Id})$.

Démonstration du i. par double implication

=: supposons que $u \circ u = u$.

$$\forall \vec{x} \in E, \ \vec{x} = \underbrace{}_{\in \operatorname{Ker}(u)} + \underbrace{}_{\in \operatorname{Im}(u)} : (\star)$$

Il reste

Applications Linéaires

- Endomorphismes remarquables d'un espace vectoriel
- Projecteurs et symétries

Exemple

- Applications linéaires et bases
 - Mode de définition d'une application linéaire

Soit $u \in \mathcal{L}(E)$, F et G des SEV supplémentaires. On connaît u lorsqu'on connait ses restrictions à F et à G.

Exemple

Théorème

Soit $u \in \mathcal{L}(E, F)$. u est déterminée de façon unique par les images des éléments d'une base quelconque de E.

Démonstration

- a) Soit $\phi \in \mathcal{L}(\mathbb{R}^2)$ tq $\phi(1,0)=(2,1)$ et $\phi(0,1)=(-1,3)$. $\forall (x,y) \in \mathbb{R}^2$, $\phi(x,y)=$
- b) $S: \left\{ egin{array}{ll} \mathbb{R}_2[X] & \to & \mathbb{R} \\ P & \mapsto & \int_0^1 P(x) \mathrm{d}x \end{array} \right.$ Calculons les images de la base canonique de $\mathbb{R}_2[X]$ par S:

$$S(1) = S(X)$$
 $S(X^2) =$

Donc
$$S(a_0 + a_1X + a_2X^2) =$$

Par exemple
$$S(3 + X - 5X^2) =$$

Exercice: dans l'espace muni d'une base $(\vec{i}, \vec{j}, \vec{k})$ et on définit une application linéaire f en posant :

$$f(\vec{i}) = 3\vec{i} + 4\vec{j} - 5\vec{k}$$
; $f(\vec{j}) = -4\vec{i} - 7\vec{j} + 10\vec{k}$ et $f(\vec{k}) = -2\vec{i} - 4\vec{j} + 6\vec{k}$.

Démontrer que f est une projection dont on précisera les éléments caractéristiques.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, dont $(\vec{e_i})_{i \in \llbracket 1, n \rrbracket}$ est une base; soit F un \mathbb{K} -espace vectoriel (qui peut être de dimension finie ou pas) et soit $u \in \mathcal{L}(E, F)$.

- i. u est injective ssi $(u(\vec{e_i}))_{i \in \mathbb{I}_{1.n}\mathbb{I}}$ est une famille libre de F;
- ii. u est surjective ssi $(u(\vec{e_i}))_{i \in \llbracket 1, n \rrbracket}$ est une famille génératrice de F;
- iii. u est bijective ssi $(u(\vec{e_i}))_{i \in \llbracket 1, n \rrbracket}$ est une base de F.

Démonstration On revient aux définitions :

i. u est injective si, et seulement si,

ii. u est surjective si, et seulement si,

iii. est une conséquence de i. et ii. car *u* est bijective si, et seulement si,

Proposition

Soit $u \in \mathcal{L}(E, F)$. On suppose que E et F sont de même dimension finie.

u est bijective $\iff u$ est injective $\iff u$ est surjective

Soit $u \in \mathcal{L}(E, F)$. On suppose que E et F sont de même dimension finie.

u est bijective $\iff u$ est injective $\iff u$ est surjective

Exemple

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \to & \mathbb{R}^3 \\ P & \mapsto & (P(0), P(1), P(2)) \end{array} \right. \text{ est un isomorphisme}.$$

Définition

On dit que E et F sont des EV **isomorphes** lorsqu'il existe un isomorphisme $u:E\to F$.

Définition

On dit que E et F sont des EV **isomorphes** lorsqu'il existe un isomorphisme $u: E \to F$.

Proposition

En dimension finie, E et F isomorphes ssi ils ont même dimension.

Définition

On dit que E et F sont des EV **isomorphes** lorsqu'il existe un isomorphisme $u: E \to F$.

Proposition

En dimension finie, E et F isomorphes ssi ils ont même dimension.

Démonstration

Supposons que E et F soient de même dimension finie n.

Réciproquement, supposons que *E* et *F* sont isomorphes. Alors,

Définition

Soit $u \in \mathcal{L}(E, F)$ avec E de dimension finie. On appelle rang de uOn le note

Exemples

- a) La dérivation $\mathbb{R}_3[X] o \mathbb{R}[X]$
- b) Dans $\mathcal{M}_2(\mathbb{R})$, la trace

c) Dans $\mathcal{M}_3(\mathbb{R})$, la transposition

Composer (à gauche ou à droite) par un isomorphisme

Proposition

En dimension finie.

Soit
$$u \in \mathcal{L}(E, F)$$
 et $v \in \mathcal{L}(F, G)$. On a :

$$rg(v \circ u)$$

Théorème du rang Soit $u \in \mathcal{L}(E, F)$. On suppose que E est de dimension finie.

Théorème du rang

Soit $u \in \mathcal{L}(E, F)$. On suppose que E est de dimension finie.

Démonstration

Soit $n = \dim E$. De deux choses l'une :

► Soit $Ker(u) = {\vec{0}}$ et alors

Sinon, soit $(\vec{x}_1, \dots, \vec{x}_p)$ une base de Ker(u). On peut alors compléter cette base en une base de E:

Définition

Une équation **linéaire** est de la forme $(Eq): u(\vec{x}) = \vec{b}$

Exemples

a) Le système linéaire
$$\begin{cases} x - 2y + z = 5\\ 3x + y - 4z = 2 \end{cases}$$

b) De façon générale,

c) L'équation différentielle $y' - 3y = \cos x$

d) De façon générale,

Soit \vec{y} est une solution particulière de l'équation linéaire $(Eq): u(\vec{x}) = \vec{b}$.

 \vec{x} est solution de (Eq) ssi

Démonstration Dire que \vec{y} est une solution particulière de l'équation linéaire (Eq) c'est dire que :

Pour tout
$$\vec{x} \in E$$
:

$$\vec{x}$$
 est solution de $(Eq) \iff$

$$\Longrightarrow$$

$$\iff$$

L'ensemble des solutions de l'équation linéaire $(Eq): u(\vec{x}) = \vec{b}$ est donc

Remarque ce type d'ensemble (appelé *espace affine*) n'est pas un espace vectoriel sauf quand

Soit $(a, b) \in \mathbb{K}^2$.

L'ensemble des suites u vérifiant la relation de récurrence linéaire d'ordre $2: u_{n+2} = au_{n+1} + bu_n$ est un plan vectoriel de $\mathbb{K}^{\mathbb{N}}$.

Démonstration

L'ensemble S cherché est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.

L'application $\left\{egin{array}{l} S o \mathbb{K}^2 \ u \mapsto (u_0,u_1) \end{array}
ight.$ est linéaire. Elle est injective et

surjective, c'est donc un isomorphisme d'espaces vectoriels. On en déduit $\dim S = \dim \mathbb{K}^2 = 2$ et S est bien un plan vectoriel de $\mathbb{K}^{\mathbb{N}}$.