PC - Lycée Brizeux Année 2025 - 2026

Programme de la colle 8

Semaine du lundi 17 au vendredi 21 novembre 2025

Liste des questions de cours :

- Définition de la convergence d'un intégrale généralisée sur [a, b[, a, b]]
- Convergence des intégrales généralisées de référence (avec démonstration)
- Théorème de comparaison des intégrales généralisées de fonctions positives (\leq , O, o, \sim)
- Intégration par parties (intégrales généralisées)
- Changement de variables (intégrales généralisées)
- Définition d'une fonction intégrable sur un intervalle I
- Caractère local de l'intégrabilité (fonction intégrable en a)
- Fonctions intégrables de référence (avec démonstration)
- Théorèmes de comparaison sur l'intégrabilité (O, o, \sim)
- Définition de (f_n) converge simplement vers f sur I
- Définition de (f_n) converge uniformément vers f sur I
- Théorème de continuité de la limite f sur I (avec démonstration pour le groupe *)
- Théorème d'intégration de la limite f sur [a,b] (avec démonstration pour le groupe *)

Chapitre 5b : Intégration sur un intervalle quelconque

- Convergence / divergence de l'intégrale généralisée d'une fonction f continue par morceaux sur [a, b[(resp. sur]a, b]), caractère local de la nature d'une intégrale, compatibilité des définitions d'intégrales pour une fonction continue par morceaux sur [a, b]; il n'y a pas de lien entre convergence de $\int_{a}^{+\infty} f$ et $\lim_{t \to \infty} f = 0$,
- Intégrales de référence : $t \mapsto e^{-\alpha t}$, $t \mapsto \ln(t)$ et Riemann y compris la généralisation à d'autres bornes que 0.
- Cas particulier des intégrales faussement généralisées.
- Intégrales généralisées sur un intervalle ouvert non vide.
- Propriétés des intégrales généralisées : linéarité, positivité, croissance, relation de Chasles.
- Théorème de comparaison des intégrales généralisées de fonctions positives (\leq , O, o, \sim).
- Calcul d'intégrales généralisées : intégration par parties, changement de variables.
- Intégrabilité : convergence absolue, la convergence absolue entraine la convergence, fonction intégrable sur I, l'espace vectoriel $L^1(I,\mathbb{K})$, caractère local de l'intégrabilité (fonction intégrable en a), intégrabilité des fonctions à valeurs complexes, fonctions intégrables de référence, nullité de l'intégrale, théorèmes de comparaison (O, o, \sim) , comparaison aux intégrales de Riemann.

Chapitre 6a : Suites de fonctions

— Différentes convergences d'une suite de fonctions :

Convergence simple, convergence uniforme, notation $||f||_{\infty,I}$ pour f bornée sur I, lien avec la convergence uniforme. La convergence uniforme sur I implique la convergence simple sur I, la réciproque est fausse.

Pour montrer que (f_n) converge uniformément vers f sur I, on peut majorer $|f_n(x) - f(x)|$ uniformément en x par α_n terme général d'une suite qui tend vers 0.

Pour montrer que (f_n) ne converge pas uniformément vers f sur I, on peut trouver une suite (x_n) telle que $(f_n(x_n) - f(x_n))$ ne tende pas vers 0.

— Propriétés de la fonction limite f: monotonie (CVS sur I), continuité (CVU sur I ou sur tout segment de I ou sur une famille adaptée de segments de I), intégration sur un segment, classe \mathcal{C}^1 , classe \mathcal{C}^p . Ces résultats permettent dans certains cas de montrer que la convergence n'est pas uniforme sur I.

— Théorème de convergence dominée.