Savoirs-faire du Chapitre 16 : Polynômes.

Vocabulaires et notations sur les polynômes

- Manipuler les définitions et les notations.
- Connaître le vacabulaire.

Exercice nº 1

- 1. Donner un polynôme unitaire de $\mathbb{R}[X]$.
- 2. Donner un polynôme de $\mathbb{R}_3[X]$.
- 3. Donner un polynôme de $\mathbb{R}[X]\setminus\mathbb{C}[X]$.
- 4. Donner un polynôme de $\mathbb{R}[X] \setminus \mathbb{R}_4[X]$.
- 5. Donner un polynôme divisible par $X^2 1$.
- 6. Donner un polynôme scindé, non unitaire de $\mathbb{R}[X]$.
- 7. Donner un polynôme non unitaire, dont π est racine double et e racine simple.
- 8. Prouver que si P et Q sont des polynômes unitaires, alors PQ et $P \circ Q$ le sont également.
- 9. Soit $B(X) = X^2$. Prouver qu'un polynôme n'a que des monômes de degrés pairs si, et seulement si, on peut l'écrire sous la forme $P \circ B$.

Calculer dans $\mathbb{K}[X]$

- Opérations usuelles : somme, combinaison linéaire, produit, composée.
- Dérivation.
- Poser une division euclidienne.

Exercice nº 2

- 1. Soit $A = X^3 X^2 + 4$ et $B = X^2 4$. Sans poser les calculs, donner les degrés des polynômes 2A + 3B, AB, A^7 , $A \circ B$ et $B \circ A$.
- 2. On garde la situation précédente. Toujours sans poser les calculs donner les coefficients dominants des polynômes 2A + 3B, AB, A^7 , $A \circ B$ et $B \circ A$.
- 3. On garde la situation précédente. Calculer AB, $B \circ A$ et $A \circ B$.
- 4. On considère $P = 3X^5 4X^5 + X$. Déterminer $P^{(n)}$ pour tout entier n.
- 5. Donner la division euclidienne de X^5 par X-1.
- 6. Poser la division euclidienne de $X^2 3iX 5(1+i)$ par X 1 + i.
- 7. Poser la division euclidienne de $4X^3 + X^2$ par X + 1 + i.
- 8. Quel est le reste dans la division euclidienne de $X^{38} 5X^{27} + 3X + 2$ par X 1?

Racines, décomposition en facteurs irréductibles.

- Savoir décider si un scalaire est une racine.
- Déterminer la multiplicité d'une racine avec des divisions ou des dérivations.
- Chercher la décomposition en facteurs irréductibles d'un polynôme; savoir qu'on peut ne pas aboutir.

Exercice no 3

- 1. Décomposer $X^4 1$ et $X^3 1$ en produit de polynômes irréductibles sur $\mathbb{C}[X]$, puis sur $\mathbb{R}[X]$.
- 2. Soit $a \in \mathbb{C}$.
 - a) Poser la division euclidienne de X^3+1 par X+a.
 - b) En déduire tous les diviseurs unitaires de $X^3 + 1$ dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.
 - c) Ecrire $X^3 + 1$ sous forme scindée.
- 3. Ecrire $X^4 + X^3 + 2X^2 + X + 1$ sous forme scindée dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.
- 4. Est-il possible de choisir $\alpha \in \mathbb{C}$ tel que i soit racine double de $X^3 + \alpha X^2 + X + \alpha$?
- 5. On considère le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.
 - a) Prouver que j est une racine de P. Préciser sa multiplicité.
 - b) En déduire l'existence d'une autre racine double.
 - c) Sans faire trop de calculs, donner une écriture scindée de P.