Devoir Maison 12 - Préparation au concours blanc

Dans tout le problème, E désigne un \mathbb{R} -espace vectoriel, Id est l'application identité de E et $\mathcal{L}(E)$ désigne l'ensemble des endomorphismes de E.

Notation: soit $f \in \mathcal{L}(E)$. On note $f^2 = f \circ f$. (Notez que $f^2 \in \mathcal{L}(E)$).

I. Les projections : définitions et exemples

Définition

Soit $p \in \mathcal{L}(E)$. On dit que p est un **projecteur** si, et seulement si, $p^2 = p$.

1. Justifiez qu'il existe au moins un projecteur de E.

Dans la suite, p désigne un projecteur de E.

- 2. Pour tout $\vec{x} \in E$, prouver que $\vec{x} \in \text{Im } p$ si, et seulement si, $p(\vec{x}) = \vec{x}$.
- 3. Montrer que $\ker p \oplus \operatorname{Im} p = E$.
- 4. Prouver que q = Id p est un projecteur. En déterminer le noyau et l'image.
- 5. Soit F et G deux sous-espaces de E qui sont supplémentaires dans E.
 Pour tout \$\vec{x}\$ ∈ E il existe une unique décomposition \$\vec{x}\$ = \$\vec{x}\$_F + \$\vec{x}\$_G avec (\$\vec{x}\$_F, \$\vec{x}\$_G ∈ F × G.
 On note alors \$p_1 : \vec{x}\$ → \$\vec{x}\$_F et \$q_1 : \$\vec{x}\$ → \$\vec{x}\$_G. On dit que \$p_1\$ est la projection sur F parallèlement à G et que \$q_1\$ est la projection sur G parallèlement à F; (\$p_1, q_1\$) est un couple de projections associées. Les sous-espaces vectoriels F et G sont les éléments caractéristiques de \$p_1\$ et \$q_1\$.
 - a) Prouver que p_1 est un endomorphisme de E. Que peut-on en déduire pour q_1 ?
 - b) Vérifier que p_1 et q_1 sont des projecteurs.
 - c) Caractériser F et G avec les images ou les noyaux de p_1 et q_1 .
 - d) En déduire que si $f \in \mathcal{L}(E)$, f est la projection sur Im (f) parallèlement à ker f si, et seulement si, f est un projecteur.

6. Application numérique

Dans \mathbb{R}^3 rapporté à $(\vec{i}, \vec{j}, \vec{k})$ on considère :

$$D = \{(x; y; z) \in \mathbb{R}^3 \mid x = y = z\}$$
 et $P = \{(x; y; z) \in \mathbb{R}^3 \mid 2x + y = 0\}$

- a) Vérifier que D et P sont des sous-espaces de \mathbb{R}^3 puis que $\mathbb{R}^3 = D \oplus P$.
- b) Soit $\vec{u}(x;y;z) \in \mathbb{R}^3$. Déterminer $\vec{u}_D \in D$ et $\vec{u}_P \in P$ tels que $\vec{u} = \vec{u}_D + \vec{u}_P$.
- c) Déduire de la question précédente une expression analytique de la projection sur D parallèlement à P.

7. Deuxième application

Dans \mathbb{R}^3 rapporté à $(\vec{i}, \vec{j}, \vec{k})$ on considère l'application :

$$\phi: (x; y; z) \longmapsto \frac{1}{10} (3x + 6y + 9z ; 2x + 4y + 6z ; x + 2y + 3z)$$

- a) Démontrer que ϕ est un endomorphisme de \mathbb{R}^3 .
- b) Prouver que ϕ est une projection dont on donnera les éléments caractéristiques.

II. Lien entre projection et supplémentarité de l'image et du noyau

Dans cette partie, f est un élément de $\mathcal{L}(E)$.

1. Montrer l'équivalence : $\ker f = \ker f^2 \iff \operatorname{Im} f \cap \ker f = \{\vec{0}\}.$

- 2. Montrer l'équivalence : Im $f = \text{Im } f^2 \iff \text{Im } f + \ker f = E$.
- 3. Donner un exemple d'endomorphisme f qui ne soit pas un projecteur et pourtant tel que ker f et Im f soient supplémentaires dans E.

III. Commutabilité avec des projecteurs

Définition

Soit H un sous-espace vectoriel de E et $f \in \mathcal{L}(E)$. On dit que H est **stable** par f lorsque $f(H) \subset H$, autrement dit lorsque $\forall \vec{x} \in H$, $f(\vec{x}) \in H$.

Définition

Soit f et g deux endomorphismes de E. On dit que f et g commutent lorsque $f \circ g = g \circ f$.

- 1. Donner des exemples d'endomorphismes qui commutent avec un projecteur donné.
- 2. Soit p un projecteur de E, f un élément de $\mathcal{L}(E)$. Montrer que f et p commutent si, et seulement si, Im p et ker p sont stables par f.