4 heures

- Le sujet comporte deux problèmes qui peuvent être traités dans l'ordre de votre choix.
- Le résultat d'une question non traitée peut être utilisé pour les questions qui la suivent.
- Le barème sera équilibré entre les deux problèmes, il est donc conseillé de passer au moins 1h30 sur chaque problème.
- Soignez la rédaction et la présentation de vos réponses, en particulier on veillera à encadrer les résultats. Il est également conseillé de prendre quelques minutes pour se relire et corriger les fautes d'orthographe.
- Les calculatrices ne sont pas autorisées.

Problème d'algèbre : Images et noyaux itérés

Dans tout le problème, E désigne un \mathbb{K} -espace vectoriel.

On note Id_E l'endomorphisme de E défini par $\forall \vec{x} \in E, \ Id_E(\vec{x}) = \vec{x}$.

Pour $p \in \mathbb{N}$ et ϕ un endomorphisme de E, on désigne par ϕ^p l'endomorphisme de E défini par :

$$\phi^0 = Id_E$$
 et $\forall p \in \mathbb{N}^*, \ \phi^p = \phi \circ \phi^{p-1}$

Pour $p \in \mathbb{N}$, on note $N_p = \ker \phi^p$ et $I_p = \operatorname{Im} \phi^p$.

I. Un exemple

Dans cette partie uniquement, on prendra $E = \mathbb{R}_2[X]$ et ϕ l'application définie par :

$$\phi(aX^{2} + bX + c) = (b+c)X^{2} + cX.$$

où a, b et c désignent trois réels.

- 1. Justifier que ϕ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer N_0 puis N_1 .
- 3. Donner les images des polynômes de la base canonique de $\mathbb{R}_2[X]$ par ϕ , puis ϕ^2 et enfin ϕ^3 .
- 4. En déduire N_2 et N_3 puis N_{3+k} pour $k \in \mathbb{N}$.

Dorénavant, on revient au cas général.

II. Quelques généralités

- 1. Interpréter N_0 et I_0 .
- 2. Pour tout $p \in \mathbb{N}$, démontrer que N_p et I_p sont des sous-espaces vectoriels de E.
- 3. Démontrer que, si $p \ge 1$, on a : $N_0 \subset N_1 \subset N_2 \subset \dots N_{p-1} \subset N_p$.
- 4. Démontrer que, si $p \ge 1$, on a : $I_p \subset I_{p-1} \subset \cdots \subset I_2 \subset I_1 \subset I_0$.

Dans la suite du problème, E est de dimension finie et on note $n = \dim E$.

III. Condition pour que N_1 et I_1 soient supplémentaires dans E

- 1. Prouver que, pour tout $p \in \mathbb{N}$ on a dim $N_p + \dim I_p = n = \dim E$.
- 2. Démontrer l'équivalence $N_1 = N_2 \iff I_1 = I_2$.
- 3. Montrer que l'une des deux conditions précédentes implique que N_1 et I_1 sont supplémentaires dans E.
- 4. Etudier la réciproque et conclure.
- 5. On étudie le cas particulier où ϕ est un projecteur. Comparer N_1 et N_p puis I_1 et I_p , pour tout $p \in \mathbb{N}^*$.
- 6. Donner un exemple d'endomorphisme ϕ tel que I_1 et N_1 soient supplémentaires dans E mais qui ne soit pas un projecteur.

IV. Une décomposition de E toujours possible

1. Montrer qu'il existe un plus petit entier naturel r tel que $r \leq n$ et $N_r = N_{r+1}$.

Dans la suite, on considère cet entier naturel r.

- 2. Montrer que $I_r = I_{r+1}$.
- 3. Prouver que pour tout $p \in \mathbb{N}$ on a $I_{n+p} = I_r$ et $N_{n+p} = N_r$.
- 4. En déduire que I_r et N_r sont supplémentaires dans E.

Problème d'analyse : étude de $\sum \frac{1}{n^2}$.

I. Résultats préliminaires

- 1. a) Prouver que, pour tous réels a et b, on a $\cos a \sin b = \frac{1}{2}(\sin(a+b) \sin(a-b))$.
 - b) Soit $\theta \in \mathbb{R}$. En utilisant l'angle moitié $\frac{\theta}{2}$, factoriser $1 e^{i\theta}$.
 - c) On considère, pour $n \in \mathbb{N}^*$, la fonction f_n définie pour tout $x \in [0; \frac{\pi}{2}]$ par : $f_n(x) = \sum_{k=1}^n \cos(2kx)$.

En utilisant la fonction S_n définie sur $[0; \frac{\pi}{2} \text{ par } S_n(x) = \sum_{k=1}^n e^{i2kx}$, ainsi que les deux formules vues dans les questions précédentes, démontrer que :

$$f_n(x) = \begin{cases} \frac{\sin((2n+1)x) - \sin(x)}{2\sin(x)} & \text{si } x \in]0; \frac{\pi}{2}] \\ n & \text{si } x = 0 \end{cases}$$

- 2. Soit $(a,b) \in \mathbb{R}^2$, fixé. Soit la fonction g définie que $]0; \frac{\pi}{2}]$ par $g(x) = \frac{ax + bx^2}{\sin(x)}$.
 - a) Justifier que l'on peut prolonger g par continuité en 0, préciser la valeur qu'a alors g(0). Dorénavant, on considère que g est définie et continue sur $[0; \frac{\pi}{2}]$.
 - b) Démontrer que g est dérivable sur $[0; \frac{\pi}{2}]$.
 - c) Calculer g'(x) en fonction de x et démontrer que g' est continue sur $[0; \frac{\pi}{2}]$ (c'est-à-dire que g est de classe \mathcal{C}^1 sur $[0; \frac{\pi}{2}]$).
- 3. On note, pour tout entier naturel n non nul, $G_n = \int_0^{\frac{\pi}{2}} g(x) \sin(nx) dx$.
 - a) Justifier que G_n est bien défini.
 - b) En utilisant une intégration par parties, prouver que $\lim_{n \to \infty} G_n = 0$.

II. Nature et somme de $\sum \frac{1}{n^2}$

1. Justifier que $\sum \frac{1}{n^2}$ converge.

Dans la suite, on se propose de calculer la somme de $\sum \frac{1}{n^2}$, c'est-à-dire la limite $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2}$.

2

- 2. Soit $k \in \mathbb{N}^*$.
 - a) Calculer $\int_0^{\frac{\pi}{2}} x \cos(2kx) dx$ et $\int_0^{\frac{\pi}{2}} x^2 \cos(2kx) dx$.
 - b) Déterminer les réels a et b tels que l'on ait $\int_0^{\frac{\pi}{2}} (ax + bx^2) \cos(2kx) dx = \frac{1}{4k^2}$. Dans la suite, le couple (a,b) a la valeur ainsi déterminée.
- 3. Démontrer que, pour $n \in \mathbb{N}^*$ on a : $\sum_{k=1}^n \frac{1}{k^2} = 4 \int_0^{\frac{\pi}{2}} (ax + bx^2) f_n(x) dx$.
- 4. Démontrer que, pour $n \in \mathbb{N}^*$ on a : $\sum_{k=1}^n \frac{1}{k^2} = 2G_{2n+1} 2\int_0^{\frac{\pi}{2}} (ax + bx^2) dx$.
- 5. Déduire des questions précédentes la somme de $\sum \frac{1}{n^2}.$