Mathématiques - Devoir Maison 5

À remettre par binômes le lundi 10 février.

L'objectif de cet exercice est de démontrer un théorème relatif aux suites : le théorème de Césaro. Pour simplifier les notations, on numérote les termes des suite à partir de 1; tous les résutats indiqués restent vrais si la numérotation part de 0.

Définition

Définition
Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels. On appelle suite des moyennes de u la suite $\left(\frac{\sum_{k=1}^n u_k}{n}\right)_{n\in\mathbb{N}}$.

Théorème

Si la suite u tend vers $\ell \in \mathbb{R}$, la suite de ses moyennes également. (Césaro)

A) Peuve du théorème

Soit u une suite qui converge vers $\ell \in \overline{\mathbb{R}}$, on note v la suite de ses moyennes.

- 1. Cas $\ell = 0$: soit $\varepsilon > 0$.
 - (a) Justifier l'existence d'un rang $N \in \mathbb{N}$ à partir duquel $|u_n| < \frac{\varepsilon}{2}$.
 - (b) En utilisant la question précédente, prouver que v converge vers 0.
- 2. Cas $\ell \in \mathbb{R}$: en utilisant 1., prouver que v converge vers ℓ .
- 3. Cas $\ell = +\infty$: prouver que v tend vers $+\infty$.
- 4. Cas $\ell = -\infty$: déduire du cas précédent que v tend vers $-\infty$.

B) Réciproque?

- 1. Enoncer la réciproque du théorème de Césaro.
- 2. Cette réciproque est fausse, proposer un contre-exemple.
- 3. Démontrer que si on ajoute l'hypothèse de monotonie sur u alors la réciproque du théorème de Césaro est vraie.

C) Lemme de l'escalier

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels telle que $u_{n+1}-u_n\underset{n\to+\infty}{\longrightarrow}\ell\in\mathbb{R}$. Montrer que $\frac{u_n}{n} \underset{n \to +\infty}{\longrightarrow} \ell$. (Lemme de l'escalier)
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Montrer que si $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell > 0$ alors $(u_n)^{\frac{1}{n}} \underset{n \to +\infty}{\longrightarrow} \ell$.
- 3. En déduire la limite de $\binom{2n}{n}^{\frac{1}{n}}$.

En option pour ceux qui en veulent plus : l'exercice 16 de la fiche sur la dérivation.