Systèmes de coordonnées

Compétences

\neg	Exprimer	les	coordonnées	d'un	vecteur	dans	11ne	hase	orthonormée.

- $\hfill \Box$ Utiliser le système de coordonnées cartésiennes.
- ☐ Utiliser le système de coordonnées cylindriques.
- $\hfill \Box$ Utiliser le système de coordonnées sphériques.

Résumé du cours

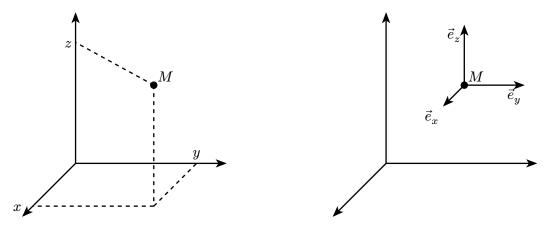
1. Coordonnées cartésiennes

1.1. Définition

En coordonnées cartésiennes, un point est repéré par la distance entre son projeté sur chacun des axes et l'origine du repère.

Les coordonnées d'un point sont notées $x \in \mathbb{R}, \, y \in \mathbb{R}$ et $z \in \mathbb{R}$

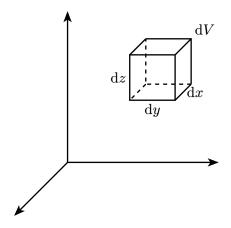
Les vecteurs de base sont les mêmes en tout point de l'espace.



Le vecteur \overrightarrow{OM} s'exprime comme $\overrightarrow{OM} = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$.

1.2. Élément de volume

L'élément de volume a pour volume $dV = dx \cdot dy \cdot dz$.



APPLICATION

Ø1

Déterminer le volume d'un parallélépipè de rectangle de hauteur h, de largeur l et de profondeur p grâce à un calcul d'intégrale.

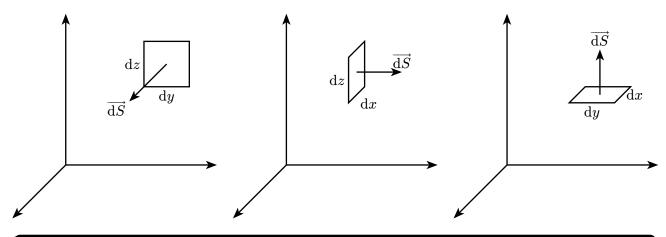
APPLICATION

d

Déterminer la masse du parallélépipè de précédent dont le sommet inférieur gauche derrière est à l'origine du repère. On donne sa masse volumi que $\mu=\mu_0(1+xy)$.

1.3. Élément de surface

Les éléments de surface sont représentés sur la figure suivante.



APPLICATION

Déterminer grâce à un calcul d'intégrale l'aire d'un triangle rectangle isocèle de hauteur l situé dans le plan (Oyz).

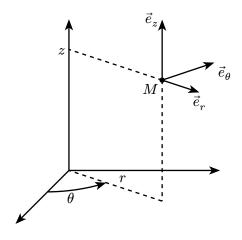
2. Coordonnées cylindriques

2.1. Définition

En coordonnées cylindriques, un point est repéré par sa distance à l'axe (Oz), l'angle entre son projeté dans le plan (Oxy) et l'axe (Ox) et la distance entre son projeté sur l'axe z et l'origine du repère.

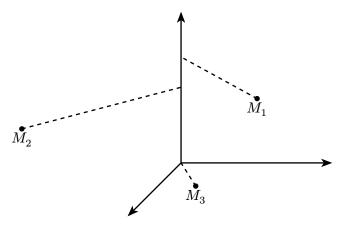
Les coordonnées d'un point sont notées $r \in \mathbb{R}^+, \ \theta \in [0, 2\pi[$ et $z \in \mathbb{R}.$

Les vecteurs de base dépendent du point considéré. La base est donc appelée base mobile.



Application 454

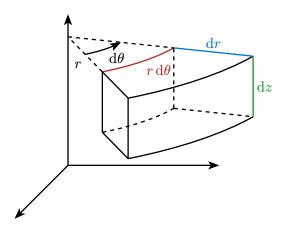
Représenter la base mobile aux points de l'exemple suivant.



Le vecteur \overrightarrow{OM} s'exprime comme $\overrightarrow{OM} = r \vec{e}_r + z \vec{e}_z.$

2.2. Élément de volume

L'élément de volume a pour volume $\mathrm{d}V = \mathrm{d}r \cdot r \cdot \mathrm{d}\theta \cdot \mathrm{d}z.$

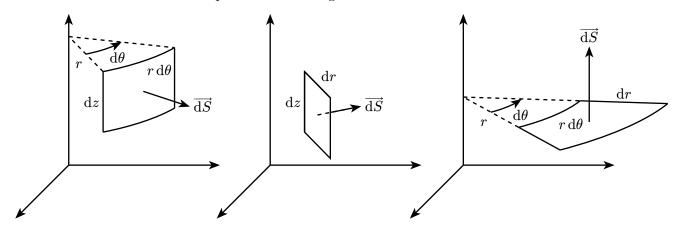


APPLICATION

Déterminer le volume d'un cylindre de rayon R et de hauteur h.

2.3. Éléments de surface

Les éléments de surface sont représentés sur la figure suivante.



APPLICATION

Déterminer grâce à un calcul d'intégrale l'aire d'un disque.

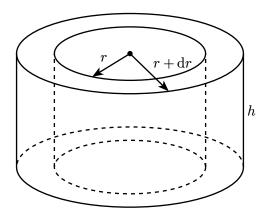
Application &7

Déterminer grâce à un calcul d'intégrale l'aire latérale d'un cylindre.

2.4. Coquille cylindrique

Lorsque le problème étudié est invariant par rotation selon θ , il peut être plus aisé d'utiliser une coquille cylindrique.

Une coquille cylindrique est un volume infinitésimal contenu entre deux cylindres concentriques de rayons r et r + dr.



L'aire intérieure de la coquille est $2\pi rh$, son aire extérieure est $2\pi (r+dr)h$ et son volume est

$$\mathrm{d}V = \pi(r+\mathrm{d}r)^2h - \pi r^2h = \pi h\big(r^2 + 2r\,\mathrm{d}r + \mathrm{d}r^2 - r^2\big) \approx 2\pi r h\,\mathrm{d}r$$

On peut aussi retrouver ce résultat en intégrant l'élément de volume cylindrique sur l'angle θ :

$$\mathrm{d}V = \int_0^{2\pi} r \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z = 2\pi r \, \mathrm{d}r h$$

APPLICATION

 \mathbb{Z}_{3}^{8}

Déterminer le volume d'un cylindre de rayon R et de hauteur h en utilisant une coquille cylindrique.

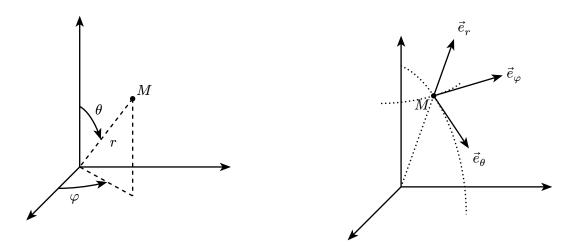
3. Coordonnées sphériques

3.1. Définition

En coordonnées sphériques, un point est repéré par sa distance à l'origine du repère, l'angle entre l'axe Oz et \overrightarrow{OM} et l'angle entre son projeté dans le plan (Oxy) et l'axe (Ox).

Les coordonnées d'un point sont notées $r \in \mathbb{R}^+$, $\theta \in [0, \pi[$ et $\varphi \in [0, 2\pi[$

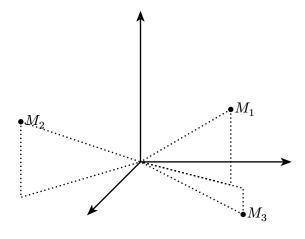
Les vecteurs de base dépendent du point considéré. La base est donc appelée base mobile.



APPLICATION

 \mathbb{Z}_{9}

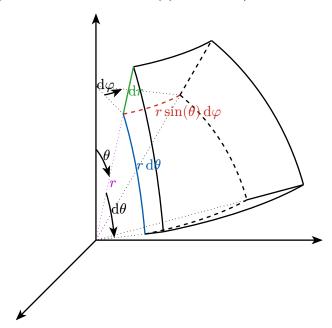
Représenter la base mobile aux points de l'exemple suivant.



Le vecteur \overrightarrow{OM} s'exprime comme $\overrightarrow{OM} = r \vec{e}_r.$

3.2. Élément de volume

L'élément de volume a pour volume $\mathrm{d}V=r^2\sin(\theta)\cdot\mathrm{d}r\cdot\mathrm{d}\theta\cdot\mathrm{d}\varphi.$

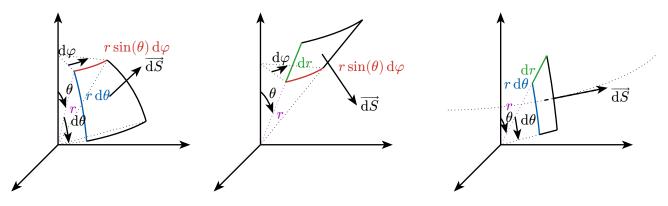


APPLICATION \swarrow_{0}^{10}

Déterminer le volume d'une boule de rayon R.

3.3. Éléments de surface

Les éléments de surface sont représentés sur la figure suivante.



APPLICATION Z₁11

Déterminer grâce à un calcul d'intégrale l'aire d'une sphère de rayon R.

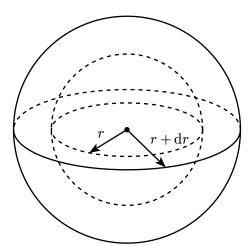
APPLICATION 4.12

Déterminer grâce à un calcul d'intégrale l'aire latérale d'un cône d'angle au sommet $\frac{\pi}{2}$ et de hauteur h.

3.4. Coquille sphérique

Lorsque le problème étudié est invariant par rotation selon θ et φ , il peut être plus aisé d'utiliser une coquille sphérique

Une coquille sphérique est un volume infinitésimale contenu entre deux sphères concentriques de rayons r et r + dr.



L'aire intérieure de la coquille est $4\pi r^2$, son aire extérieure est $4\pi (r+\mathrm{d}r)^2$ et son volume est

$$\mathrm{d}V = \frac{4}{3}\pi(r+\mathrm{d}r)^3 - \frac{4}{3}\pi r^3 = \frac{4}{3}\pi(r^3+3r^2\,\mathrm{d}r + 3r\mathrm{d}r^3 + \mathrm{d}r^3 - r^3) \approx 4\pi^2\,\mathrm{d}r$$

On peut aussi retrouver ce résultat en intégrant l'élément de volume sphérique sur les angles θ et φ :

$$\mathrm{d}V = \int_0^{2\pi} \int_0^\pi r^2 \sin(\theta) \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi = 4\pi r^2 \, \mathrm{d}r$$

Déterminer le volume d'une boule de rayon ${\cal R}$ en utilisant une coquille sphérique.