MATHEMATIQUES

Feuille d'Exercices Topologie-Limite-Continuité dans un espace vectoriel normé

Exercice 1. Ecrit E3A 2018. Soient $\Omega = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})/(a-d)^2 + 4bc > 0 \right\}$ et $F = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})/(a-d)^2 + 4bc \ge 0 \right\}$

- 1. Montrer que Ω est un ouvert de $\mathscr{M}_2(\mathbb{R})$ et F un fermé de $\mathscr{M}_2(\mathbb{R}).$
- 2. Soit \mathcal{D}_2 l'ensemble des matrices diagonalisables de $\mathcal{M}_2(\mathbb{R})$. Prouver que l'on a : $\Omega \subset \mathcal{D}_2 \subset F$
- 3. \mathcal{D}_2 est-il un fermé de $\mathcal{M}_2(\mathbb{R})$? un ouvert de $\mathcal{M}_2(\mathbb{R})$? Justifier.

Exercice 2. Ecrit E3A 2017. On se donne $n \ge 2$ un entier et on note

- $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n à coefficients réels
- O_n la matrice nulle de \mathcal{E} et I_n la matrice identité
- \mathcal{N} l'ensemble des matrices nilpotentes de \mathcal{E} , c'est à dire des $A \in \mathcal{E}$ telles qu'il existe un entier p avec $A^p = O_n$.
- 1. Montrer que \mathcal{N} est une partie fermée de \mathcal{E} .
- 2. Soient $A \in \mathcal{N}$, $\alpha \in \mathbb{R}^*$ et $M = I_n + \alpha A$. Montrer que $\det(M) = 1$. En déduire que toute boule ouverte de centre A contient au moins une matrice de rang n puis que l'intérieur de \mathcal{N} est vide.
- 3. Soit F un sous-espace de \mathcal{E} . Montrer que si l'intérieur de F est non vide, alors $F = \mathcal{E}$. Retrouver alors le résultat de la question précédente.

Exercice 3. Soit $(A, B) \in \mathcal{M}_p(\mathbb{C})^2$ et $(A_n)_n$ une suite de matrices inversibles telle que : $(A_n)_n$ converge vers A et $(A_n^{-1})_n$ converge vers B.

Montrer que A est inversible et $A^{-1} = B$.

Exercice 4. (CCP 2014 écrit)

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$ et on note pour $f \in E$, $||f|| = |f(0)| + ||f'||_{\infty}$.

- 1. Montrer que ||.|| est une norme.
- 2. On désigne par $(f_n)_n$ la suite de fonctions définie sur [0,1] par :

$$\forall n \in \mathbb{N}^*, \forall t \in [0, 1], f_n(t) = \frac{\sin(n\pi t)}{\sqrt{n}}$$

Montrer que $(f_n)_n$ converge uniformément vers la fonction nulle sur [0,1].

- 3. Soit l'application $L: f \mapsto \int_0^1 \sqrt{1 + (f'(t))^2} dt$.
 - (a) Montrer que $\forall n \in \mathbb{N}^*, L(f_n) \geq 2\sqrt{n}$.
 - (b) Montrer que L n'est pas continue sur $(E, ||.||_{\infty})$.
 - (c) Montrer que L est continue sur $(E, \|.\|)$.

Exercice 5. Ecrit Centrale 2021. Soit $(P^{(k)})_{0 \le k \le n}$ une suite de vecteurs de \mathcal{M}_{1n} . On note $P^{(k)} = (p_1^{(k)}, \dots, p_n^{(k)})$. On suppose que $\sum_{i=1}^n p_i^{(k)} = 1$.

On suppose qu'il existe une matrice $T \in \mathcal{M}_n(\mathbb{R})$ telle que : $P^{(k+1)} = P^{(k)}T$ et que la suite $(P^{(k)})_{0 \le k \le n}$ converge vers P. Montrer que P = PT et que si on note $P = (p_1, \dots, p_n)$, alors $\sum_{i=1}^n p_i = 1$.

Exercice 6. Ecrit Mines Pont 2017.

- 1. Montrer que l'ensemble des matrices stockastiques (matrices dont les coeffs sont positifs et dont la somme des coefficients de chaque ligne est égale à 1) est fermée et convexe.
- 2. Si on considère une suite de matrices stockastiques $(A_k)_k$ convergente vers une matrice P. Que peut-on dire sur P?

Exercice 7. Ecrit Centrale 2015. Soit f une fonction continue sur [0,1] telle que f(1)=1. On pose $A=\{x\in[0,1]/f(x)=x\}$.

- 1. Montrer que A est un fermé de \mathbb{R} .
- 2. Montrer que A admet une borne inférieure a.
- 3. Montrer qu'il existe une suite d'éléments de A convergente vers a.
- 4. Montrer que l'équation f(x) = x admet une plus petite solution.

Exercice 8. Soit $A \in \mathcal{M}_p(\mathbb{C})$ diagonalisable.

- 1. Soit une suite $(M_n)_n$ de matrices semblables à A convergente vers B. En utilisant les polynômes annulateurs, montrer que B est diagonalisable.
- 2. Montrer que $\chi_A = \chi_B$.
- 3. Montrer que l'ensemble des matrices semblables à A est fermé dans $\mathcal{M}_p(\mathbb{C})$.

Exercice 9. Soit $E = \mathcal{M}_n(\mathbb{R})$.

- 1. Justifier que $(A, B) \mapsto AB$, $A \mapsto (A, {}^{t}A)$ sont des applications continues sur E.
- 2. Montrer que $O_n(\mathbb{R}) = \{A \in E/{}^t\!AA = I_n\}$ est un fermé borné.

Exercice 10. Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice antisymétrique telle que la suite $(A^n)_n$ converge vers une matrice B. Montrer que B = 0.

Exercice 11. Soit E un evn d dimension finie, K une partie fermée bornée de E et $f: K \to K$ une application k-lipschitzienne avec k < 1.

En considérant l'application $x \mapsto ||f(x) - x||$, montrer que f admet un unique point fixe.

Exercice 12. Pour tout polynôme $P \in \mathbb{R}[X]$ qui s'écrit $P = \sum_{k=0}^{n} a_k X^k$, on pose $N(P) = \sum_{k=0}^{n} |a_k|$. On admet que c'est une norme.

On considère les applications u et v définies sur $\mathbb{R}[X]$ par :

$$\forall P \in \mathbb{R}[X], u(P) = P(0) \text{ et } v(P) = P'$$

- 1. Montrer que $\forall P \in \mathbb{R}[X], |u(P)| \leq N(P)$
- 2. Soit $\forall n \in \mathbb{N}, P_n = X^n$. Les suites $(P_n)_n$ et $(v(P_n))_n$ sont elles bornées dans $(\mathbb{R}[X], N)$
- 3. Etudier la continuité de u et v sur l'evn $(\mathbb{R}[X],N)$